
SMask: Preventing Injection Attacks in Web Applications
by Approximating Automatic Data/Code Separation∗

Martin Johns
Security in Distributed Systems (SVS)

University of Hamburg, Dept. of Informatics
Vogt-Koelln-Str. 30, D-22527 Hamburg

johns@informatik.uni-hamburg.de

Christian Beyerlein
Security in Distributed Systems (SVS)

University of Hamburg, Dept. of Informatics
Vogt-Koelln-Str. 30, D-22527 Hamburg

9beyerle@informatik.uni-hamburg.de

ABSTRACT
Web applications employ a heterogeneous set of program-
ming languages: the language that was used to write the
application’s logic and several supporting languages. Sup-
porting languages are e.g., server-side languages for data
management like SQL and client-side interface languages
such as HTML and JavaScript. These languages are handled
as string values by the application’s logic. Therefore, no syn-
tactic means exists to differentiate between executable code
and generic data. This circumstance is the root of most code
injection vulnerabilities: Attackers succeed in providing ma-
licious data that is executed by the application as code. In
this paper we introduce SMask, a novel approach towards
approximating data/code separation. By using string mask-
ing to persistently mark legitimate code in string values,
SMask is able to identify code that was injected during the
processing of an http request. SMask works transparently to
the application and is implementable either by integration
in the application server or by source-to-source translation
using code instrumentation.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Prepro-
cessors, Interpreters

General Terms
Security

Keywords
Code Injection, Web Application

∗This work was supported by the German Ministry of Eco-
nomics and Technology (BMWi) as part of the project “se-
cologic”, www.secologic.org.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’07 March 11-15, 2007, Seoul, Korea
Copyright 2007 ACM 1-59593-480-4 /07/0003 ...$5.00.

1. INTRODUCTION
Nowadays web applications are ubiquitous. They are not

confined anymore to colorful communication, advertising
and online banking. Modern web applications are now used
for critical applications like project management, enterprise
resource planing, or supply chain management. Unfortu-
nately web applications are prone to various classes of code
injection attacks. In the first six months of 2006 alone more
than 550 cross site scripting and over 350 SQL injection vul-
nerabilities were posted to the BugTraq mailing list. With
the ever growing importance of web applications the impact
of these vulnerabilities grew accordingly from being mere
annoyances to actual severe threats.

In this paper we discuss the underlying mechanisms of
code injection attacks and propose SMask, a protection mech-
anism based on automatic separation between data and code.

1.1 Native and foreign code
Web applications employ a varying amount of heteroge-

neous computer languages, some taking effect on the web
server and some in the user’s web browser (see Figure 1 for
an example scenario). Most important on the server side is
the language that was used to program the actual web appli-
cation’s logic (e.g., PHP or Java). From now on we refer to
this language as the application’s native language. All other
languages found in a given web application are denoted as
foreign.

Web applications are usually written in interpreted script-
ing languages like PHP and Perl or in languages like Java
that compile into byte code. In the latter case the byte
code is interpreted by a virtual machine. Languages that
compile into binary code are rarely used to write web ap-
plications. While our approach is applicable for either vari-
ation, in this paper we only refer to interpreted languages.
The web server itself solely executes the application’s native
language directly using the language’s interpreter. Foreign
code is either passed on to specific interpreters or sent to the
user’s web browser to be executed there. Server-side foreign
languages are mostly employed for data management. In
this context SQL for interaction with a database and XML
for structured data storage in the filesystem are used fre-
quently. On the client side a couple of foreign languages
are used to define and implement the application’s interface
(e.g., HTML, JavaScript, CSS).

Location of foreign code: Web applications can in-
clude foreign code from different origins. Often foreign code
is directly part of the application’s source code. In this case,

the foreign code is kept in static string constants. Further-
more, the application can obtain foreign code on runtime
from external data sources like databases or the filesystem,
an example being predefined HTML templates. In these
cases the interpreter reads the foreign code into string vari-
ables. The native language’s interpreter processes all these
strings and passes them to their respective destinations (see
Listing 1).� �

// foreign HTML code
echo "go ";
// foreign SQL code
$sql = "SELECT * FROM users";
$con.execute($sql);� �
Listing 1: Examples of embedded foreign code

As all foreign code is handled in form of string values, on a
syntactical level the web application has no means to differ-
entiate strings that contain foreign code from strings that
contain general data. Furthermore, during the processing of
an http request strings that contain foreign code are often
combined with data that was obtained on runtime. This
way dynamic information can be included in the code, e.g.,
to read a certain user’s dataset from the database. If this
dynamically added data is not properly sanitized security
problems can arise.

1.2 Code Injection Attacks
In general all string values that are provided by an ap-

plication’s user on runtime should be treated purely as data
and never be executed. But if a flaw in the application’s logic
allows an execution of this data, an attacker can succeed in
injecting malicious code. Common classes of code injection
vulnerabilities are Cross Site Scripting, SQL Injection, and
Remote Command Execution:

Cross Site Scripting (XSS): This class of vulnerabili-
ties subsumes security issues that enable an attacker to in-
ject HTML or JavaScript into a web application’s pages. A
successful XSS attack can lead to e.g., the stealing of au-
thentication information, privilege escalation or disclosure
of confidential data.

SQL Injection: In the case of SQL injection, the at-
tacker is able to maliciously manipulate SQL queries that
are passed to the application’s database. This flaw can lead
to e.g., unauthorized access, data manipulation, or infor-
mation disclosure. See Section 2.1 for an example of this
vulnerability class.

Remote Command Execution: Sometimes an applica-
tion dynamically creates code in either its native language or
as input to a different server side interpreter (e.g., the shell).
If insufficient sanitized, user-provided data is included in this

SQL

XML

HTML

JavaScript

CSS

Filesystem

Database

Web browser

PHP

Web server

Figure 1: Heterogeneous programming languages

code an attacker may be able to execute arbitrary commands
on the web server.

2. DATA/CODE SEPARATION
As described above many insecurities in today’s web appli-

cations are rooted in confusing data and code. By exploiting
this common flaw, an attacker is able to inject code or code
fragments into the application. As shown above foreign code
in web applications is handled as content of strings. Our ap-
proach aims to automatically deduct if a given string con-
stant represents foreign code or generic data, thus providing
an approach to data and code separation.

In general it is undecidable if a given string constant will
be executed as foreign code in a given environment. As a
full formal proof of this claim is out of the scope of this
paper, we provide a sketch of this proof which is a variant of
Rice’s theorem [13]: Suppose there is an algorithm A(C, I)
that returns true if given an input I a program C uses its
first string constant for code execution. Then we could build
a program P that includes A, which contradicts the initial
hypothesis:

P (I) = {
string s = ’rm -rf /’

if (A(I, I) == false)

execute(s);
else

print(s);
}

If we now run P (P), a call to P with its own source code as
input, a contradiction is triggered: If A decides that P will
not execute s, s gets executed by P and if A decides that s
will be executed by P , P merely prints s and exits.

As the general problem to decide if a given string con-
stant will be executed in a given situation (and therefore
contains code) is undecidable, we have to approximate a
solution. We choose an over-approximation approach. In
this context over-approximation results in an algorithm that
identifies all strings that will be executed. However such an
over-approximating algorithm may also falsely classify some
general data to be code.

2.1 String Masking
In this section we outline our approach towards approx-

imative data/code separation. As web applications handle
foreign code and generic data in strings, there is no syntactic
means to differentiate between these two classes during pro-
gram execution. For this reason we propose string masking,
a method that enables our technique to syntacticly mark for-
eign code in strings without changing the native language’s
string type.

General approach: Our proposed method is based on
the following assumption: All general semantics of foreign
code are completely defined in the application’s source code
and static data sources. Dynamically obtained data, like
user input, is only used to add data values to the predefined
code. In other words: User input never contains actual code.
Obviously, there are exceptions to this rule, see Section 2.3
for details.

Legal and illegal code: This assumption leads us to
the following definition: All foreign code that is part of the
application before the processing of an http request is legal.
More precisely: Legal foreign code is either part of the ap-
plication’s source code or contained in specific trusted data

Figure 2: Schematic view of the processes

sources like database tables or files. Only this foreign code is
allowed to be executed or included in the application’s web
pages. Accordingly, all foreign code that is added dynami-
cally to the application in the course of processing data is
potentially malicious and should be neutralized. This code is
from here on denoted as illegal code. Please note an impor-
tant distinction in this matter: This definition does solely
apply to actual code and not to data values that have been
added to preexisting legal code.

Example 1 (illegal code): An application contains the
following predefined SQL instruction:� �

$sql = "SELECT * FROM USERS WHERE ID = $id
and PASS = ’$pw’";� �

The variables $id and $pw are placeholders for dynamic data
values representing the ID and password of a user. If the
application uses the values 42 and foo to complete the SQL
statement, the resulting code looks like this:� �

"SELECT * FROM USERS WHERE ID = 42
and PASS = ’foo’"� �

The foreign code represented by this string is still legal, as
only data values have been added on runtime. But if an at-
tacker can figure out a way to pass arbitrary values to either
variable, the application is vulnerable to SQL-injection. In
this case the attacker can pass the string “bar’ OR ’1’ =

’1” as value for $pw to bypass the application’s authentica-
tion mechanism. Then the resulting SQL string would look
like the following:� �

"SELECT * FROM USERS WHERE ID = 42
and PASS = ’bar’ OR ’1’ = ’1’"� �

Now the foreign code in the string is not legal anylonger.
Besides the data values also semantic elements have been
added dynamically. The signifiers “OR” and “=” do not clas-
sify as data values but are instead language elements that
change the code’s actual logic.

Note: In the following paragraphs we describe our tech-
nique solely in respect to JavaScript and countering Cross
Site Scripting attacks. This is done to avoid unnecessary
complex descriptions. The technique itself is not limited to
XSS but applicable to counter various injection attacks. See
Section 3.4 for details on that matter.

Security Pre- and Post-processor: As shown in Sec-
tion 1.1, foreign code is embedded in web applications ei-
ther as part of string constants or in kept in external data
sources. We introduce a pre- and a post-processor for illegal
code detection. For every string constant the preprocessor
enforces a syntactic separation between data and code by
masking certain parts of the string. After the processing of
an http request, the post-processor detects and neutralizes

Language Keywords

HTML

– All reserved HTML tag names with more
than two characters
e.g., html, head, body, script

– All predefined HTML attributes
e.g., href, src, onload, onmouseover

JavaScript

– All reserved JavaScript words
e.g., for, while, try, eval

– Selected DOM signifiers
e.g., document, children, getElementById

– Names of global JavaScript objects
e.g., window, location

Table 1: Used keywords

illegal code. Furthermore, the post-processor removes the
masks that were applied by the pre-processor.

Masking legal code: Before processing the http request,
all foreign code is masked to enable deterministic identifica-
tion of legal code in the course of processing the request. To
find legal code in the application’s data a set of keywords is
used. The pre-processor examines every string constant that
is part of the application’s source code whether it contains
any of the specified keywords. If such a keyword was found,
the keyword is replaced with a code mask. This mask is a
per-request random token representing the found keyword.
If this keyword is found more than once, it is always re-
placed by the same token. The masking is done on the first
initialization of the string constant. Furthermore, all server
side input, that has been specified to contain legal code,
is filtered accordingly: All found keywords are replaced by
per-request code masks. This way it is ensured that all le-
gal foreign code is masked before it enters the application.
The pre-processor stores the pairs consisting of the original
keywords and the per-request masks in a table to enable the
reverse transition later on.

Keywords: A proper set of keywords has to be chosen to
counter the projected attacks. By definition a keyword is a
single entity. In the source code it is always framed by non-
alphabetic characters. As mentioned above XSS attacks are
actually HTML/JavaScript injection attacks. To counter
these attacks the keyword list consists of reserved HTML
signifier, HTML attributes, reserved JavaScript words and
names of global JavaScript/DOM objects (see table 1).

Detecting and encoding illegal code: The post-pro-
cessor searches for foreign code before the resulting HTML
data is sent to the browser. This is done using the same
keyword list as the pre-processor. As all legal code has been
priorly masked, all foreign code that can be found is either
illegal or not code at all. In the latter case the suspicious
code is actually textual data that contains code keywords,
e.g., a forum post discussing JavaScript issues. The post-
processor encodes all found keywords using HTML entities.

Reversing the code masking: After all illegal code
has been encoded, the final processing step is applied. The
post-processor examines the HTML code in the web server’s
output buffer and uses the mapping between keywords and
random tokens to reverse the pre-processors actions. All
previously masked keywords are restored before sending the
http response to the user’s browser.

Example 2 (masking): An application contains the in-
struction:

� �
echo "You

searched for $term.";� �
If the variable $term is not sanitized by the application,
this would be a classical example for a cross site scripting
vulnerability. The pre-processor identifies the keyword href

and applies an one-time mask:� �
echo "<a _x2sgth_=’user.pl’>You

searched for $term.";� �
If a malicious user would try to exploit the XSS vulnerability
by passing JavaScript code to $term, the output buffer may
look like:� �

<a _x2sgth_=’user.pl’>You
searched for <script >var a=...� �

Before sending the resulting web page to the web browser,
the post-processor scans the output buffer for keywords again.
Thus he finds the injected code. This code is encoded using
HTML entities:� �

<a _x2sgth_=’user.pl’>You
searched for <scr...� �

This encoding disarms the illegal code, as it is no longer
recognized as HTML or JavaScript by the web browser, thus
neutralizing it effectively. After all illegal code has been
encoded, the post-processor removes the code mask:� �

You
searched for <scr...� �

The resulting HTML document is included in the http re-
sponse.

Communication with outside data sources: As men-
tioned above and shown in Figure 2 the pre- and post-
processor also handle string data communication with out-
side entities like the file system or databases. Legal code in
incoming strings is masked and string masks are removed
from outgoing data. Furthermore, the post-processor re-
moves present string masks from identifiers like file- or table-
names before accessing the outside data source.

2.2 False positives and false negatives
In order to assess the provided protection of the proposed

mechanism, we have to consider cases where the described
processes fail. A failure could either be a false positive or
a false negative. With a false positive we describe the false
identification of harmless data as illegal code. With a false
negative we describe the case, if one of the processors fails to
detect foreign code. The potential consequences of these two
failure classes are fundamentally different: A false positive
might lead to problems in the further execution of the web
application. A false negative may enable a successful code
injection attack. We examine each potential failure case to
establish the probability of its occurrence and its potential
impact.

Pre-processor false positives: A false positive of the
pre-processor occurs if a string constant contains a foreign
code keyword outside the context of actual foreign code.
This might happen for different reasons:

The keyword could be part of textual data. For example
the DOM tree signifier “document” may be used in a text
about old manuscripts. This false positive is neither no-
ticeable nor problematic, as before the textual data leaves

the scope of the native code, the post-processor removes the
code mask and restores the original text.

Furthermore, the found keyword could be used to conduct
operations on the produced webpage. For example sophis-
ticated web applications apply filters on HTML code before
passing it to the browser. These filters may use strings for
search operations on the HTML code. Again, as the map-
ping between keywords and code masks is static, such opera-
tions can function as intended. Our proposed technique does
not change the syntactic structure represented in the appli-
cation’s strings. It just replaces certain string constants, the
keywords, with other string constants, the code masks.

Finally, the identified keyword could be in fact a tex-
tual identifier used in one of the application’s native lan-
guage constructs. Some programming languages use strings
to access data stored in containers like hashtables. If the
hashtable’s identifiers are only used inside the application
source code such a false positive does not yield any prob-
lematic consequences. The mapping between the keyword
and the code mask is static for the complete processing of
an http request. Thus, the deterministic referencing of in-
formation is unhindered. But if the hashtable’s identifiers
are derived from an outside entity like a database table or
the actual http request, the access to the hashtable’s infor-
mation may be hindered. In this case the pre-processor has
to be adapted slightly to avoid the false positive.

Post-processor false positives: As it is the case with
the pre-processor, a false positive of the post-processor oc-
curs when a keyword is found in a non-code context. In this
case the keyword is either part of the webpage’s text or a
value of a dynamically generated HTML attribute. The for-
mer case does not pose any problems. The post-processor
encodes the found keyword in HTML entities which are dis-
playable by the web browser.

To discuss the latter case we have to differentiate between
different attribute types. We can divide HTML attributes
in six classes based on the value type they accept (see table
2 for details). HTML attributes accept either numerical val-
ues, identifiers, predefined textual data, JavaScript, URLs,
or variable textual data. Three of these classes are safe in
this context as their values cannot cause false positives: Nu-
merical values cannot include foreign code keywords, iden-
tifiers are not derived from user input, and the list of pre-
defined attribute values does not intersect with the used
list of foreign code keywords. Furthermore, by definition
there cannot be a false positive concerning JavaScript, as our
countermeasure explicitly aims at detecting and neutralizing
rogue script code. False positives in URL-attributes lead to
URLs that are partly encoded in HTML entities. As mod-
ern web browser interpret encoded URLs correctly, such an
incidence does not disturb the web application. This leaves
false positives in attributes that accept variable textual data.
Within this class we have not encountered problems caused
by false positives. Commonly used attributes from this class
are either never parsed by the web browser (e.g., rel) or
work transparent with HTML encoded values (e.g., alt or
value). But as such attributes are sometimes used for pur-
poses that are not covered in the HTML specification [5],
there may be rare problematic scenarios.

Pre-processor false negative: As the encoding of the
server side data is controlled and deterministic, such a false
negative can only happen if the used list of keywords is in-
complete.

Value type Examples
Numerical value width, height
Identifier class, name, id
Predefined textual data align, type, method
JavaScript onload, onclick, onfocus
URL href, src
Variable textual data alt, value, rel

Table 2: Value types of HMTL attributes

Post-processor false negatives: The correct detection
of illegal code depends on the ability of the post-processor
to find specific keywords in the output buffer. Attackers are
known to employ various input encoding techniques to evade
filter mechanism [15]. The basic idea behind most of these
evading techniques is to create HTML code that does not
comply with the general grammar of HTML [5] but is still
recognized by the web browser. The reason which enables
this approach is that HTML parsers are known to employ a
rather forgiving parsing process. This behavior enables web
browsers to render web pages that contain faulty HTML
code. The post-processor has to take all known evading
techniques into consideration to be able to detect such ob-
fuscated HTML tokens. But as it is undocumented which
syntax errors in HTML code the diverse browsers accept,
there might still exist undiscovered evading techniques. Be-
cause of this special characteristic of HTML parsers an at-
tacker might be able to craft data that contains HTML code
which is not detectable by the post-processor. This way the
attacker may under certain conditions succeed to include
a rogue HTML tag into the resulting webpage. If such a
previously undiscovered evading technique is discovered the
mechanisms can be adapted easily, as the post-processor is
a single central component. Nonetheless, the inclusion of
a functioning JavaScript is not feasible: Other parsers are
strict in which syntax they accept or reject. For this reason
the techniques described in [15] do not apply to program-
ming languages like JavaScript or SQL. For a successful in-
jection attack the complete injected code has to evade the
detection process. A single detected and encoded code frag-
ment causes the attacked interpreter’s parser to recognize a
syntax error and abort the execution of the injected code.

2.3 Allowing Foreign Code
There are legitimate scenarios in which a web application

needs to generate foreign code from dynamically obtained
data, e.g., discussion forums that permit a subset of HTML,
web based database frontends that provide an SQL shell or
a content management system that allows its administra-
tor to include JavaScript in the system’s pages. To enable
such dynamic generation of foreign code, we introduce URL
based policies. Such a policy whitelists single foreign code
keywords. Before encoding illegal code the post-processor
checks if one of the application’s policies matches the re-
quest’s URL. If this is the case, the post-processor skips the
encoding of the keywords that are specified in the matching
policy.

Also, these policies are used by the pre-processor to iden-
tify trusted data-sources. String values that are obtained
from such sources are masked as if the strings were part
of the application’s source code. As the pre- and post-

processor are single application-global entities, these poli-
cies provide a central mechanism to control certain security
properties of the application, e.g., the particulars of user
provided HTML.

Examples: A policy to allow a weblog’s visitors to add
images to their comments would look like this:

<policy unit="post-processor">

<url>/blog/comments.php</url>

<keyword>img</keyword>

<keyword>src</keyword>

</policy>

Accordingly, a policy specifing an external data source as
trusted to contain legal HTML code would look like this:

<policy unit="pre-processor">

<file>/templates/*</file>

<keyword>img</keyword>

...

</policy>

2.4 Implementation approaches
There are two distinct approaches to implement the pro-

posed methods. Either the described measures can be di-
rectly integrated in the native language’s interpreter/com-
piler or they can be implemented by instrumenting the source
code. The details of a direct integration are very dependent
on the specific language. Therefore, we omit a general de-
scription of this approach for brevity reasons. See Section
3.1 for a concrete example.

Code instrumentation is an automatic source-to-source
transformation that wraps certain functions with calls to
either the pre- or the post-processor. If code instrumen-
tation is used, the source code of the whole application is
modified before passing it to the interpreter. The actions of
the pre- and post-processor are implemented as regular func-
tions and added to the application’s code. All static strings
are wrapped by the pre-processor function. Furthermore,
all function calls that retrieve string values from external
data sources are wrapped as well. Accordingly the post-
processor wraps all function calls, that cause string data
to leave the system. The application’s source code has to
be instrumented only once. The modified source code can
be stored permanently and serve as the application’s actual
code base.

Example: Before instrumentation:� �
// static string constants
$code = "<script >... </script >";
// accessing external string constants
$data = fread($file , 100);
// writing string data
fwrite($file , $data);� �

After instrumentation:� �
// static string constants
$code = __smPrepro("<script >... </ script >");
// accessing external string constants
$data = __smPrepro(fread($file , 100));
// writing string data
fwrite($file , __smPostpro($data));� �

Implementing the final post-processing of the produced HTML
code with code instrumentation may not always be possi-
ble. In this case two alternative solution exist to realize the
post-processor without modifying the actual interpreter: If
the language provides an output buffering mechanism, which
collects the complete HTML code before passing it to the

web server, this mechanism can be employed to implement
the final post-processing. However some languages do not
provide such a buffering mechanism. In this situation, a
proxy mechanism between the language’s interpreter and
the web server has to be introduced.

2.5 Generality the approach
As mentioned above our approach is neither limited to

countering cross site scripting nor to web applications. In
this section we give examples for further possible deploy-
ments:

SQL Injection and Remote Command Execution:
Applying our proposed method to counter other code injec-
tion attacks is in general a matter of extending the list of
keywords and adapting the policies. Only the post-processor’s
method to neutralize potential malicious code is dependent
on the nature of the protected interpreter. To avoid un-
wanted consequences of false positives, we use string encod-
ing methods whenever possible. For example SQL dialects
usually provide the function char() that takes numerical
values and translates them to the corresponding characters.
This function can be used to disarm potential SQL Injection
attempts in the same fashion as we used HTML encoding to
counter XSS attacks.

Directory traversal and shell injection: These two
classes of attacks are based on the injection of meta char-
acters like .., |, or &&. As the semantics of these signifiers
are on the same abstraction level as code keywords, our ap-
proach is also applicable to counter these attack classes.

3. DISCUSSION

3.1 Practical implementation using PHP
For a practical implementation of our concept, we chose

a direct integration into an interpreter. We decided in favor
of the direct integration over a source-to-source instrumen-
tation approach, as we anticipated such an implementation
to be easy integrable in existing setups, thus encouraging
SMask’s usage. We implemented SMask as an PHP5 ex-
tension [16]. PHP extensions are powerful libraries that are
plugged directly into the PHP interpreter. They can ac-
cess global data structures, pre-process an http request’s
data, apply operations on PHP’s output buffer, introduce
new functions to PHP, and modify the semantics of existing
ones. Additionally, we added four lines of code to the source
code of the PHP interpreter. This had to be done to enable
SMask’s integration in PHP’s parser.

To mask code in static string constants that are part of the
applications source code, SMask injects a hook in the PHP
parsing process. This hook causes PHP’s lexer to pass the
lexical tokens to SMask’s pre-processor. The pre-processor
examines these tokens whether they represent one of PHP’s
different string constants. If this is the case the token’s data
is masked according to the list of keywords. Subsequently
the token is passed on to the actual parser. In order to in-
tercept communication with external data sources like the
filesystem or a database, our extension redirects calls to the
respective API functions through either the pre- or the post-
processor. Furthermore, PHP communicates request-global
data like the POST and GET parameters via hashtables.
For this reason the extension implements a SAPI input filter
which examines these specific tables whether they contain
keys that match one of the keywords. If such a key is found,

it is masked to allow unhindered access to the hashtable’s
values. Finally, our extension registers a handler for PHP’s
output buffer. This handler applies the post-processing op-
erations on the http response’s body.

3.2 Evaluation
The practical evaluation of our approach was twofold. On

the one hand we examined if our implementation is compat-
ible with existing applications, on the other hand we assured
that our concept indeed provides the desired protection.

Evaluation of compatibility: At first we examined if
execution problems occur when existing PHP applications
are run on a PHP system that uses our SMask extension.
For this reason we installed several popular open source PHP
applications. See Table 3 for details. All tested web appli-
cations worked as expected without any modifications.

Application Version Vulnerability
PHPMyAdmin 2.8.0.3 [none]
PHPNuke 7.8 XSS in search module [1]
PHPBB 2.0.16 XSS in nested tags [12]
Wordpress 2.0.4 [none]
Tikiwiki 1.9.3.1 Multiple XSS issues [2]

Table 3: List of tested PHP applications

Evaluation of protection: In order to verify that our
technique indeed prevents XSS attacks, two testing approaches
were applied. For one we tested known XSS attack methods
against a self written test script and secondly we examined
vulnerable versions of popular applications.

Our test script solely consists of a simple echoing function,
that writes all user input directly unfiltered in an HTML
page. Using the XSS attacks listed in [15], two different
policies were evaluated: One policy that prohibits all user-
supplied code and one policy that allows a typical HTML
subset, thus permitting the dynamic inclusion of basic text-
formating and usage of hyperlinks. Both policies prevented
our XSS attacks.

Then we installed three PHP applications with public dis-
closed XSS flaws (see Table 3). Executing the attack vectors
that were documented in the respective advisories, we veri-
fied that SMask successfully prevented the exploit.

3.3 Protection
If an attacker injects correctly masked code, this code is

translated to working foreign code by the post-processor.
Therefore, the measure’s effectiveness in protecting against
injection attacks depends on the ability of an attacker to
guess correct code masks. As every keyword is masked dif-
ferently, the attacker has to guess the individual masks for
all keywords used in his attack. For this reason the success
probability of such an attack shrinks with the number of
keywords used in the attack. To estimate a lower bound for
this probability we have to look at attack vectors with as
few keywords as possible. For example the following string
represents the smallest XSS attack vector that is able to
conduct a meaningful attack:� �

<script src="http ://a.org/a.js"></script >� �
This vector contains only two keywords: script and src. If
the processors employs code-masks of length eight over an

alphabet of 62 symbols (numbers and characters in upper
and lower case), the probability of a successful attack is:

Psuccess =
1

628(628 − 1)

In the case that the keyword src is permitted, e.g., by a site
that allows its users to post images, the probability is:

Psuccess =
1

628

These probabilities are constant over a series of attacks, as
the code masks change for every single http request. For the
same reason hypothetical information leaks pose no security
problem.

3.4 Future work
Our proposed approach to determine if a string contains

code is rather coarse. While the described method allows
efficient implementation for on-the-fly checking of string val-
ues, it produces a certain number of false positives. Efficient
on-the-fly checking is an important property only for imple-
mentations that are directly included in the language’s in-
terpreter. However, source-to-source code instrumentation
can be mostly pre-calculated and the resulting code can be
stored for actual usage. If this approach is chosen, more so-
phisticated methods for code detection are applicable. We
plan on investigating algorithms that employ the applica-
tion’s control flow graph to improve our approximation.

Furthermore, advanced source-to-source translation can
also improve the SMask’s performance. As stated in the
last paragraph, most of pre-processing has to be done only
once, for example the decision step whether a static string
constant qualifies as potential code:� �

// Naive approach:
string $s = __smPrepro("<body > Hello");
// Improved approach:
string $s = __smMask("<body >") + " Hello";� �
Finally, there is room for improvement in the field of poli-

cies. Instead of solely relying on keyword matching, we can
use more sophisticated techniques to determine if dynami-
cally added foreign code is legal or illegal. Such techniques
can e.g., take relationships between single code fragments
into consideration.

3.5 Related work
In the last decade extensive research concerning the pre-

vention of code injection attacks has been conducted. In this
section we only discuss works that describe protection mech-
anisms for web applications. We discuss the approaches in
general and if applicable, how they compare to our work.

Manual approaches: To counter injection attacks, ap-
plications have to treat untrusted data with caution. For
this reason input validation and output sanitization are em-
ployed. Input validation procedures check if incoming data
matches predefined specifications. Output sanitization takes
effect before HTML data is sent to the web browser, aiming
to remove malicious content. Both tasks depend on vari-
ous factors, e.g., the expected data types, the role of the
connected user, or the actual execution context. Therefore,
a single centralized, well audited implementation is seldom
possible. Instead web applications frequently have to rely
on several protection mechanisms that are scattered through

the code. For this reason manual protection against injec-
tion attacks is a complex and error prone task. For example,
in 2005 a XSS input filter was added to the PHPNuke con-
tent management system that still was vulnerable against
numerous known XSS attack vectors [1].

Countering SQL Injections: SQLrand [3] uses instruc-
tion set randomization to counter SQL injection attacks. All
SQL statements that are included in the protected applica-
tion are modified to include a randomized component. Be-
tween the application and the database a proxy mechanism
is introduced that parses every query using the modified in-
struction set. As the attacker does not know the correct
syntax, a code injection attack will result in a parsing er-
ror. SQLrand requires the programmer of the application
to permanently include the randomized syntax in the appli-
cation’s source code. Therefore SQLrand does not protect
legacy applications. Furthermore, as the randomization is
static, information leaks like SQL error messages might lead
to partial or full disclosure of the randomized instruction
set. In comparison our approach works transparently with
legacy applications and employs different code masks for ev-
ery request, thus rendering information leaks harmless.

Su and Wassermann [18] describe an approach that em-
ploys context free grammars for data validation. Data that
is dynamically added to foreign code statements has to ful-
fill specifically constructed grammars. The approach has
been implemented as “SQLCheck” to prevent SQL injec-
tion attacks. By tracking dynamically added values through
the application’s processes SQLCheck can identify untrusted
values before the query is passed to the database. These val-
ues are parsed by the constructed grammar to validate their
correctness.

Dynamic Taint analysis: Taint analysis tracks the flow
of untrusted data through the application. All user pro-
vided data is “tainted” until its state is explicitly set to be
“untainted”. This allows the detection if untrusted data
is used in a security sensible context. Taint analysis was
first introduced by Perl’s taint mode [8]. More recent works
describe finer grained approaches to dynamic taint propa-
gation. These techniques allow the tracking of untrusted
input on the basis of single characters. While coming from
a fundamentally different direction this approach is poten-
tially as powerful as ours: Before passing code to external
interpreters all keywords that contain tainted characters are
rejected or encoded.

In independent concurrent works Nguyen-Tuong et al [10]
and Pietraszek and Vanden Berghe [11] proposed fine grained
taint propagation to counter various classes of injection at-
tacks. Both approaches require a modification of the inter-
preter to enhance its string data type. The extended string
data type can carry character-level taint information that is
preserved by all string operations. A low level integration
of the protection mechanism in the native language’s inter-
preter is therefore essential for these approaches to work. In
comparison our technique can be implemented using code
instrumentation as described in Section 2.4 and requires
therefore no necessary alteration of the interpreter or ap-
plication server. Xu et al [19] propose a fine grained taint
mechanism that is implemented using a C-to-C source code
translation technique. Their method detects a wide range
of injection attacks in C programs and in languages which
use interpreters that were written in C. To protect an inter-
preted application against injection attacks the application

has to be executed by a recompiled interpreter. Therefore,
the source code of the interpreter is needed while our tech-
nique can also be employed for closed source languages using
the code instrumentation approach.

Static taint analysis: Besides dynamic taint analysis
which is done on run-time, there have been proposals for
static taint analysis that is solely done by examining the
application’s source code. Using static source code analysis
a data flow graph of the application is generated. Using this
graph, the analyzer tries to determine if a data path be-
tween the untrusted user input and security sensitive func-
tions exists. Static taint analysis for web application has
been described by Huang et al [4], Livshits and Lam [9],
and Jovanovic et al [6].

Web application firewalls: The term web application
firewall describes applications that are positioned between
the network and the web server. Using a specific ruleset,
incoming data is modified or removed to counter injection
attacks. In Scott and Sharp’s [17] proposal the firewall’s
ruleset is defined in a specialized security policy description
language. According to this ruleset incoming user data (via
POST, GET and cookie values) is sanitized. Only requests
to URLs for which policies have been defined are passed to
the web server. The Sanctum AppShield Firewall is another
web application firewall [7]. AppShield executes default fil-
ter operations on all user provided data in order to remove
potential XSS attacks. AppShield requires no application
specific configuration which makes it easy to install but less
powerful. Furthermore, Mod security [14] is an open source
web application firewall specific for the Apache web server
that allows detailed analysis and modification of incoming
http requests. Web application firewalls can only substitute
input validation mechanisms, as they do not possess any
knowledge about the application’s internals. The provided
protection is therefore seldom complete.

4. CONCLUSION
In this paper we proposed SMask, a novel approximation

to automatic data/code separation for countering injection
attacks. SMask employs string masking to introduce a syn-
tactical means which enables the web application to differ-
entiate between legitimate and injected code. This way a
variety of code injection attacks can be prevented.

SMask can either be implemented by integration in the na-
tive language’s interpreter or by automatic source-to-source
code instrumentation. Our approach works transparent and
requires no manual changes to the protected application.
The two main components, the pre- and the post-processor,
are central entities which are configured by policy files. There-
fore, these policies establish a central point to administrate
the security properties of the web application.

Using our approach web applications can be effectively
protected against code injection attacks without requiring
profound changes in the application’s source code or existing
infrastructure.

5. REFERENCES
[1] Maksymilian Arciemowicz. Bypass xss filter in

phpnuke 7.9. mailing list BugTraq,
<http://www.securityfocus.com/archive/1/
419496/30/0/threaded>, December 2005.

[2] Blwood. Multiple xss vulnerabilities in tikiwiki 1.9.x.
mailing list BugTraq,

<http://www.securityfocus.com/archive/1/
435127/30/120/threaded>, May 2006.

[3] Stephen W. Boyd and Angelos D. Keromytis. Sqlrand:
Preventing sql injection attacks. In Proceedings of the
2nd Applied Cryptography and Network Security
(ACNS) Conference, 2004.

[4] Yao-Wen Huang, Fang Yu, Christian Hang,
Chung-Hung Tsai, Der-Tsai Lee, and Sy-Yen Kuo.
Securing web application code by static analysis and
runtime protection. In Proceedings of the 13th
conference on World Wide Web, pages 40–52. ACM
Press, 2004.

[5] Ian Jacobs, Arnaud Le Hors, and David Raggett.
Html 4.01 specification. W3C recommendation,
November 1999.

[6] Nenad Jovanovic, Christopher Kruegel, and Engin
Kirda. Pixy: A static analysis tool for detecting web
application vulnerabilities. In 2006 IEEE Symposium
on Security and Privacy, May 2006.

[7] Amit Klein. Cross site scripting explained. White
Paper, Sanctum Security Group,
<http://crypto.stanford.edu/cs155/CSS.pdf>, June
2002.

[8] LarryWall, Tom Christiansen, and Jon Orwant.
Programming Perl. O’Reilly, 3rd edition, July 2000.

[9] V. Benjamin Livshits and Monica S. Lam. Finding
security vulnerabilities in java applications using
static analysis. In Proceedings of the 14th USENIX
Security Symposium, August 2005.

[10] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley,
and D. Evans. Automatically hardening web
applications using precise tainting. In 20th IFIP
International Information Security Conference, 2005.

[11] Tadeusz Pietraszek and Chris Vanden Berghe.
Defending against injection attacks through
context-sensitive string evaluation. In Recent Advances
in Intrusion Detection (RAID2005), 2005.

[12] Alex Pigrelax. Xss in nested tag in phpbb 2.0.16.
mailing list BugTraq,
<http://www.securityfocus.com/archive/ 1/404300>,
July 2005.

[13] H. G Rice. Classes of recursively enumerable sets and
their decision problems. Trans. Amer. Math. Soc.,
74:358–366, 1953.

[14] Ivan Ristic. Apache Security. O’Reilly, March 2005.

[15] RSnake. Xss (cross site scripting) cheat sheet - esp:
for filter evasion. Website,
<http://ha.ckers.org/xss.html>, last visit 18/08/06.

[16] George Schlossnagle. Advanced PHP Programming.
Sams, February 2004.

[17] D. Scott and R. Sharp. Abstracting application-level
web security. In Proceedings of 11th ACM
International World Wide Web Conference, pages 396
– 407. ACM Press New York, NY, USA, 2002.

[18] Zhendong Su and Gary Wassermann. The essence of
command injection attacks in web applications. In
Proceedings of POPL’06, January 2006.

[19] Wei Xu, Sandeep Bhatkar, and R. Sekar.
Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In 15th
USENIX Security Symposium, August 2006.

