
Secure Code Generation for Web Applications

Martin Johns1,2, Christian Beyerlein3, Rosemaria Giesecke1,
and Joachim Posegga2

1 SAP Research – CEC Karlsruhe
{martin.johns,rosemaria.giesecke}@sap.com

2 University of Passau, Faculty for Informatics and Mathematics, ISL
{mj,jp}@sec.uni-passau.de

3 University of Hamburg, Department of Informatics, SVS
9beyerle@informatik.uni-hamburg.de

Abstract. A large percentage of recent security problems, such as Cross-
site Scripting or SQL injection, is caused by string-based code injection
vulnerabilities. These vulnerabilities exist because of implicit code cre-
ation through string serialization. Based on an analysis of the vulnerabil-
ity class’ underlying mechanisms, we propose a general approach to outfit
modern programming languages with mandatory means for explicit and
secure code generation which provide strict separation between data and
code. Using an exemplified implementation for the languages Java and
HTML/JavaScript respectively, we show how our approach can be real-
ized and enforced.

1 Introduction

The vast majority of today’s security issues occur because of string-based code
injection vulnerabilities, such as Cross-site Scripting (XSS) or SQL Injection.An
analysis of the affected systems results in the following observation: All pro-
grams that are susceptible to such vulnerabilities share a common characteris-
tics – They utilize the string type to assemble the computer code that is sent
to application-external interpreters. In this paper, we analyse this vulnerabil-
ity type’s underlying mechanisms and propose a simple, yet effective extension
for modern programming languages that reliably prevents the introduction of
string-based code injection vulnerabilities.

1.1 The Root of String-Based Injection Vulnerabilities

Networked applications and especially web applications employ a varying amount
of heterogeneous computer languages (see Listing 1), such as programming (e.g.,
Java, PHP, C#), query (e.g., SQL or XPATH), or mark-up languages (e.g., XML
or HTML).

1 // embedded HTML syntax
2 out.write("go ");
3 // embedded SQL syntax
4 sql = "SELECT * FROM users ";

Listing 1. Examples of embedded syntax

F. Massacci, D. Wallach, and N. Zannone (Eds.): ESSoS 2010, LNCS 5965, pp. 96–113, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

Secure Code Generation for Web Applications 97

This observation leads us to the following definition:

Definition 1 (Hosting/Embedded). For the remainder of this paper we will
use the following naming convention:

• Hosting language: The language that was used to program the actual
application (e.g., Java).

• Embedded language: All other computer languages that are employed by
the application (e.g., HTML, JavaScript, SQL, XML).

Embedded language syntax is assembled at run-time by the hosting applica-
tion and then passed on to external entities, such as databases or web browsers.
String-based code injection vulnerabilities arise due to a mismatch in the pro-
grammer’s intent while assembling embedded language syntax and the actual
interpretation of this syntax by the external parser. For example, take a dynam-
ically constructed SQL-statement (see Fig. 1.a). The application’s programmer
probably considered the constant part of the string-assembly to be the code-
portion while the concatenated variable was supposed to add dynamically data-
information to the query. The database’s parser has no knowledge of the pro-
grammer’s intent. It simply parses the provided string according to the embedded
language’s grammar (see Fig. 1.b). Thus, an attacker can exploit this discord in
the respective views of the assembled syntax by providing data-information that
is interpreted by the parser to consist partly of code (see Fig. 1.c).

In general all string values that are provided by an application’s user on
runtime should be treated purely as data and never be executed. But in most
cases the hosting language does not provide a mechanism to explicitly generate
embedded syntax. For this reason all embedded syntax is generated implicitly
by string-concatenation and -serialization. Thus, the hosting language has no
means to differentiate between user-provided dynamic data and programmer-
provided embedded code (see Fig. 1.d). Therefore, it is the programmer’s duty
to make sure that all dynamically added data will not be parsed as code by the
external interpreter. Consequently, if a flaw in the application’s logic allows an
inclusion of arbitrary values into a string segment that is passed as embedded
syntax to an external entity, an attacker can succeed in injecting malicious code.

Code Data

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘” + $pass + “’”;

Code Data Data

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘mycatiscalled’”;

a. The programmer’s view b. The DB’s view

Code Data Code

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘ ’ OR ‘1’=‘1’”;

StringString String

$pass = $_GET[“password”];

$sql = “SELECT * FROM Users WHERE Passwd = ‘” + $pass + “’”;

c. The DB’s view (code injection) d. The hosting language’s view

Fig. 1. Mismatching views on code

98 M. Johns et al.

This bug pattern results in many vulnerability types, such as XSS, SQL injection,
directory traversal, shell command injection, XPath injection or LDAP injection.

A considerable amount of work went into addressing this problem by ap-
proaches which track the flow of untrusted data through the application (see
Sec. 4). However, with the exception of special domain solutions, the causing
practice of using strings for code assembly has not been challenged yet.

1.2 The String Is the Wrong Tool!

As motivated above, assembly of computer code using the string datatype is
fundamentally flawed. The string is a “dumb” container type for sequences of
characters. This forces the programmer to create embedded syntax implicitly.
Instead of clearly stating that he aims to create a select-statement which ac-
cesses a specific table, he has to create a stream of characters which hopefully
will be interpreted by the database in the desired fashion. Besides being notori-
ously error-prone, this practice does not take full advantage of the programmer’s
knowledge. He knows that he wants to create a select-statement with very spe-
cific characteristics. But the current means do not enable him to state this intent
explicitly in his source code.

1.3 Contributions and Paper Outline

In this paper we propose to add dedicated capabilities to the hosting language
that

– allow secure creation of embedded syntax through
– enforcing explicit creation of code semantics by the developer and
– providing strict separation between embedded data and code.

This way, our method reliably prevents string-based code injection vulnerabili-
ties. Furthermore, our approach is

– applicable for any given embedded language (e.g., HTML, JavaScript, SQL),
– can be implemented without significant changes in the hosting language,
– and mimics closely the current string-based practices in order to foster ac-

ceptance by the developer community.

The remainder of the paper is organised as follows. In Section 2 we describe
our general objectives, identify our approach’s key components, and discuss how
these components can be realised. Then, in Section 3 we document our practical
implementation and evaluation. For this purpose, we realised our method for the
languages Java and HTML/JavaScript. We end the paper with a discussion of
related work (Sec. 4) and a conclusion (Sec. 5).

2 Concept Overview

In this section, we propose our language-based concept for assembly of embedded
syntax which provides robust security guarantees.

Secure Code Generation for Web Applications 99

2.1 Keeping the Developers Happy

Before describing our approach, in this section we list objectives which we con-
sider essential for any novel language-based methodology to obtain acceptance
in the developer community.

Objectives concerning the hosting language: Foremost, the proposed con-
cepts should not depend on the characteristics of a specific hosting language.
They rather should be applicable for any programming language in the class of
procedural and object-orientated languages1. Furthermore, the realisation of the
concepts should also not profoundly change the hosting language. Only aspects
of the hosting language that directly deal with the assembly of embedded code
should be affected.

Objectives concerning the creation of embedded syntax: The specific
design of every computer language is based on a set of paradigms that were
chosen by the language’s creators. These paradigms were selected because they
fitted the creator’s design goals in respect to the language’s scope. This holds
especially true for languages like SQL that were not designed to be a general
purpose programming language but instead to solve one specific problem domain.
Therefore, a mechanism for assembling such embedded syntax within a hosting
language should aim to mimic the embedded language as closely as possible. If
the language integration requires profound changes in the embedded syntax it is
highly likely that some of the language’s original design paradigms are violated.
Furthermore, such changes would also cause considerable training effort even for
developers that are familiar with the original embedded language.

Finally, string operations, such as string-concatenation, string-splitting, or
search-and-replace, have been proven in practice to be a powerful tool for syntax
assembly. Hence, the capabilities and flexibility of the string type should be
closely mimicked by the newly introduced methods.

2.2 Key Components

We propose a reliable methodology to assemble embedded language syntax in
which all code semantics are created explicitly and which provides a strict sepa-
ration between data and code. In order to do so, we have to introduce three key
components to the hosting language and its run-time environment: A dedicated
datatype for embedded code assembly, a suitable method to integrate the em-
bedded language’s syntax into the hosting code, and an external interface which
communicates the embedded code to the external entity (see Fig. 2).

Datatype: We have to introduce a novel datatype to the hosting language
that is suitable to assemble/represent embedded syntax and that guarantees
strict separation between data and code according to the developer’s intent.
In the context of this document we refer to such a datatype as ELET, which
is short for Embedded Language Encapsulation Type.

1 To which degree this objective is satisfiable for functional and logical programming
languages has to be determined in the future.

100 M. Johns et al.

Hosting Language

Database External

Interpreters

Web

Services

Web

Browser

Language integration

Embedded

language

Datatype

External

Interfaces

Fig. 2. Key components of the proposed approach

Language integration: To fill the ELET datatype, suitable means have to be
added to the hosting language which enable the developer to pass embed-
ded syntax to the datatype. As motivated above these means should not
introduce significant changes to the embedded language’s syntax.

External interface: For the time being, the respective external entities do not
yet expect the embedded code to be passed on in ELET form. For this reason,
the final communication step is still done in character based form. Therefore,
we have to provide an external interface which securely translates embedded
syntax which is encapsulated in an ELET into a character-based represen-
tation. Furthermore, all legacy, character-based interfaces to the external
entities have to be disabled to ensure our approach’s security guarantees.
Otherwise, a careless programmer would still be able to introduce code in-
jection vulnerabilities.

In the following sections we show how these three key components can be realised.

2.3 The Embedded Language Encapsulation Type (ELET)

This section discusses our design decisions concerning the introduced datatype
and explains our security claims.

As shown in Sec. 1.1, the root cause for string-based code injection vulnerabil-
ities is that the developer-intended data/code-semantics of the embedded syntax
are not correctly enforced by the actual hosting code which is responsible for the
syntax assembly. Therefore, to construct a methodology which reliably captures
the developer’s intent and provides strict separation between data and code, it
is necessary to clarify two aspects of embedded syntax assembly:

For one, an intended classification of syntax into data and code portions im-
plies that an underlying segmentation of individual syntactical language elements
exist. Hence, the details of this segmentation have to be specified. Furthermore,
after this specification step, a rationale has to be built which governs the assign-
ment of the identified language elements into the data/code-classes.

ELET-internal representation of the embedded syntax: The main design
goal of the ELET type is to support a syntax assembly method which bridges
the current gap between string-based code creation and the corresponding pars-
ing process of the application-external parsers. For this reason, we examined the

Secure Code Generation for Web Applications 101

mechanisms of parsing of source code: In general, the parsing is, at least, a two
step process. First a lexical analysis of the input character stream generates a
stream of tokens. Then, a syntactical analysis step matches these tokens accord-
ing to the language’s formal grammar and aligns them into tree structures such
as parse-trees or abstract syntax-trees. The leafs of such trees are the previously
identified tokens, now labeled according to their grammar-defined type (e.g.,
JavaScript defines the following token types: keyword-token, identifier-token,
punctuator-token, and data-value).

Hence, we consider regarding an embedded language statement as a stream of
labeled tokens to be a suitable level of abstraction which allows us to precisely
record the particularities of the embedded syntax. Consequently, the ELET is a
container which holds a flat stream of labeled language tokens. See Listing 2 for
an exemplified representation of Sec. 1.1’s SQL.

1 $sql = {select -token , meta -char(*), from -token , tablename -token(Users),
2 where -token , fieldname -token(Passwd), metachar (=), metachar(’),
3 stringliteral(mycatiscalled), metachar (’)}

Listing 2. ELET-internal representation of Fig. 1.b’s SQL statement

Identification of language elements: An analysis of common embedded lan-
guages, such as HTML, SQL, or JavaScript, along with an investigation of the
current practice of code assembly yields the following observation: The set of ex-
isting token-types can be partitioned into three classes - static tokens, identifier
tokens, and data literals (see Fig. 3):

Static tokens are statically defined terminals of the embedded language’s gram-
mar. Static tokens are either language keywords (such as SQL instructions,
HTML tag- and attribute-names, or reserved JavaScript keywords) or meta-
characters which carry syntactical significance (such as * in SQL, < in HTML,
or ; in JavaScript).

Identifier tokens have values that are not statically defined within the lan-
guage’s grammar. However, they represent semi-static elements of the em-
bedded code, such as names of SQL tables or JavaScript functions. As already
observed and discussed, e.g., in [2] or [6], such identifiers are statically de-
fined at compile-time of the hosting code. I.e., the names of used JavaScript
functions are not dynamically created at run-time – they are hard-coded
through constant string-literals in the hosting application.

Data literals represent values which are used by the embedded code. E.g.,
in Fig. 1.b the term “mycatiscalled” is such a literal. As it can be obtained
from Fig. 1.a the exact value of this literal can change every time the hosting
code is executed. Hence, unlike static and identifier tokens the value of data
literals are dynamic at run-time.

Rules for secure assembly of embedded syntax: As previously stated, our
methodology relies on explicit code creation. This means, for instance, the only
way for a developer to add a static token representing a select-keyword to a

102 M. Johns et al.

$sql = “SELECT * FROM Users WHERE Passwd = ‘foobar ’ ”;

static token data literalidentifier token

Fig. 3. Examples of the identified token classes

SQL-ELET is by explicitly stating his intent in the hosting source code. Conse-
quently, the ELET has to expose a set of disjunct interfaces for adding members
of each of the three token-classes, e.g. implemented via corresponding APIs. For
the remainder of this paper, we assume that these interfaces are in fact imple-
mented via API-calls. Please note: This is not a defining characteristic of our
approach but merely an implementation variant which enables easy integration
of the ELET into existing languages.

We can sufficiently model the three token-classes by designing the ELET’s
API according to characteristics identified above regarding the define-time of
the tokens’ values (see also Listing 3):

– API calls to add a static token to the ELET container are themselves com-
pletely static. This means, they do not take any arguments. Hence, for every
element of this token-class, a separate API call has to exist. For instance,
to add a select-keyword-token to a SQL-ELET a corresponding, dedicated
addSelectToken()-method would have to be invoked.

– Identifier tokens have values which are not predefined in the embedded lan-
guage’s grammar. Hence, the corresponding ELET interface has to take a
parameter that contains the token’s value. However, to mirror fact that the
values of such tokens are statically defined at compile-time and do not change
during execution, it has to be enforced that the value is a constant literal.
Furthermore, the embedded language’s grammar defines certain syntactic
restrictions for the token’s value, e.g., the names of JavaScript variables can
only be composed using a limited set of allowed characters excluding whites-
pace. As the arguments for the corresponding API methods only accept con-
stant values these restrictions can be checked and enforced at compile-time.

– The values of data literals can be defined completely dynamically at run-
time. Hence, the corresponding API methods do not enforce compile-time
restrictions on the values of their arguments (which in general consist of
string or numeric values).

1 sqlELET.addSelectToken (); // no argument
2 [...]
3 sqlELET.addIdentifierToken (" Users "); // constant argument
4 ...
5 sqlELET.addStringLiteral(password); // dynamic argument
6 [...]

Listing 3. Exemplified API-based assembly of Fig. 1.b’s SQL statement

Through this approach, we achieve reliable protection against string-based
code injection vulnerabilities: All untrusted, attacker-controlled values enter the

Secure Code Generation for Web Applications 103

application as either string or numeric values, e.g., through HTTP parameters
or request headers. In order to execute a successful code injection attack the
adversary has to cause the hosting application to insert parts of his malicious
values into the ELET in a syntactical code context, i.e., as static or identifier
tokens. However, the ELET interfaces which add these token types to the con-
tainer do not accept dynamic arguments. Only data literals can be added this
way. Consequently, a developer is simply not able to write source code which in-
voluntarily and implicitly creates embedded code from attacker-provided string
values. Hence, string-based code injection vulnerabilities are impossible as the
ELET maintains at all times strict separation between the embedded code (the
static and identifier tokens) and data (the data literal tokens).

2.4 Language Integration

While the outlined API-based approach fully satisfies our security requirements,
it is a clear violation of our developer-oriented objective to preserve the em-
bedded language’s syntactic nature (see Sec. 2.1). A direct usage of the ELET
API in a non-trivial application would result in source code which is very hard
to read and maintain. Consequently, more suitable methods to add embedded
syntax to the ELET have to be investigated.

A direct integration of the embedded syntax into the hosting language, for in-
stance through a combined grammar, would be the ideal solution (see Listing 4).
In such a case, the developer can directly write the embedded syntax into the
hosting application’s source code. First steps in this direction have been taken
by Meijer et al. with Xen [14] and LINQ [13] which promote a subset of SQL and
XML to be first class members of C# However, this approach requires signifi-
cant, non-trivial changes in the hosting language which are not always feasible.
Also achieving full coverage of all features of the embedded language this way is
still an open problem. Even advanced projects such as LINQ only cover a subset
of the targeted languages and omit certain, sophisticated aspects which are hard
to model within C#’s functionality.

1 sqlELET s = SELECT * FROM Users;

Listing 4. Direct integration of the embedded syntax

Instead, we propose a light-weight alternative which uses a source-to-source
preprocessor: The embedded syntax is directly integrated into the hosting ap-
plication’s source code, unambiguously identified by predefined markers, e.g. $$
(see Listing 5). Before the application’s source code is compiled (or interpreted),
the preprocessor scans the source code for the syntactical markers. All embed-
ded syntax that can be found this way is parsed accordingly to the embedded
language’s grammar and for each of the identified language tokens a correspond-
ing API-call is added to the hosting source code (see Listing 6). The resulting
API-based representation is never seen by the developer. He solely has to use un-
modified embedded syntax. To add data values through hosting variables to the
embedded syntax and offer capabilities for more dynamic code assembly (e.g.,

104 M. Johns et al.

selective concatenation of syntax fragments) a simple meta-syntax is provided
(see Sec. 3.2 for details).

1 sqlELET s = $$ SELECT * FROM Users $$

Listing 5. Preprocessor-targeted integration of embedded syntax

1 sqlELET s.addSelectToken (). addStarMetachar (). addFromToken ()
2 .addIdentifierToken (" Users ");

Listing 6. Resulting API representation generated by the preprocessor

Compared to direct language integration, this approach has several advantages.
For one, besides the adding of the ELET type, no additional changes to the
original hosting language have to be introduced. The preprocessor is completely
separate from the hosting language’s parsing process. This allows flexible in-
troduction of arbitrary embedded languages. Furthermore, achieving complete
coverage of all features of the embedded language is not an issue. The only re-
quirements are that the preprocessor covers the complete parsing process of the
embedded language and the ELET provides interfaces for all existing tokens.
Hence, covering obscure or sophisticated aspects of the embedded language is as
easy as providing only a subset of the language.

However, our approach has also a drawback: The source code that is seen by
the hosting application’s parser differs from the code that the developer wrote.
If parsing errors occur in source code regions which were altered by the pre-
processor, the content of the parser’s error message might refer to code that is
unknown to the programmer. For this reason, a wrapped parsing process which
examines the error messages for such occurrences is advisable.

2.5 External Interface

Finally, before communicating with the external entity (e.g., the database), the
ELET-contained embedded syntax has to be serialized into a character-based
representation. This is done within the external interface. From this point on,
all meta-information regarding the tokens is lost. Therefore, the reassembly into
a character-based representation has to be done with care to prevent the rein-
troduction of code injection issues at the last moment. The embedded syntax
is provided within the ELET in a semi-parsed state. Hence, the external in-
terface has exact and reliable information on the individual tokens and their
data/code-semantics. Enforced by the ELET’s restrictive interfaces, the only el-
ements that may be controlled by the adversary are the data values represented
by data literal tokens. As the exact context of these values within the embedded
syntax is known to the external entity, it can reliably choose the correct encod-
ing method to ensure the data-status of the values (see Sec. 3.3 for a concrete
implementation).

Secure Code Generation for Web Applications 105

2.6 Limitations

Before we document our practical implementation of our approach, we discuss
the limitations of our methodology:

Run-time code evaluation: Certain embedded languages, such as JavaScript,
provide means to create code from string values at run-time using function like
eval(). Careless usage of such functionality can lead to string-based code injec-
tion vulnerabilities which are completely caused by the embedded code, such as
DOM-based XSS [9]. The protection capabilities of our approach are limited to
code assembly within the hosting language. To provide protection against this
specific class of injection vulnerabilities, an ELET type has to be added to the
embedded language and the eval()-functionality has to be adapted to expect
ELET-arguments instead of string values.

Dynamically created identifier tokens: As explained in Sec. 2.3 the values
of identifier tokens have to be defined through constant values. However, some-
times in real-life code one encounters identifiers which clearly have been created
at run-time. One example are names of JavaScript variables which contain an
enumeration component, such as handler14, handler15, etc. As this is not al-
lowed by our approach, the developer has to choose an alternative solution like
his purpose, e.g. arrays.

Permitting dynamic identifiers can introduce insecurities as it may lead to
situations in which the adversary fully controls the value of an identifier token.
Depending on the exact situation this might enable him to alter the control or
data flow of the application, e.g. by exchanging function or variable names.

3 Practical Implementation and Evaluation

3.1 Choosing an Implementation Target

To verify the feasibility of our concepts, we designed and implemented our ap-
proach targeting the embedded languages HTML/JavaScript2 and the hosting
language Java. We chose this specific implementation target for various rea-
sons: Foremost, XSS problems can be found very frequently, rendering this
vulnerability-class to be one of the most pressing issues nowadays.Furthermore,
as HTML and JavaScript are two independent languages with distinct syntaxes
which are tightly mixed within the embedded code, designing a suiting preproces-
sor and ELET-type is interesting. Finally, reliably creating secure HTML-code is
not trivial due to the lax rendering process employed by modern web browsers.

3.2 API and Preprocessor Design

The design of the ELET API for adding the embedded syntax as outlined in
Sec. 2.3 was straightforward after assigning the embedded languages’ elements
2 NB: The handling of Cascading Style Sheets (CSS), which embody in fact a third

embedded language, is left out in this paper for brevity reasons.

106 M. Johns et al.

to the three distinct token types. Also, implementing the language preprocessor
to translate the embedded code into API calls was in large parts uneventful.
The main challenge was to deal with situations in which the syntactical context
changed from HTML to JavaScript and vice versa. Our preprocessor contains
two separate parsing units, one for each language. Whenever a HTML element
is encountered that signals a change of the applicable language, the appropriate
parser is chosen. Such HTML elements are either opening/closing script-tags or
HTML attributes that carry JavaScript-code, e.g., event handlers like onclick.

As motivated in Sec. 2.1, we aim to mimic the string type’s characteristics
as closely as possible. For this purpose, we introduced a simple preprocessor
meta-syntax which allows the programmer to add hosting values, such as Java
strings, to the embedded syntax and to combine/extend ELET instances (see
Listings 7 and 8). Furthermore, we implemented an iterator API which allows,
e.g., to search a ELET’s data literals or to split an ELET instance.

1 HTMLElet h $=$ Hello $data(name)$, nice to see you! $$

Listing 7. Combination of embedded HTML with the Java variable name

3.3 Adding an External Interface for HTML Creation to J2EE

In order to assemble the final HTML output the external interface iterates
through the ELET’s elements and passes them to the output buffer. To deter-
ministically avoid XSS vulnerabilities, all encountered data literals are encoded
into a form which allows the browser to display their values correctly without
accidentally treating them as code. Depending on the actual syntactical context
a given element appears in an HTML page, a different encoding technique has
to be employed:

– HTML: All meta-characters, such as <, >, =, " or ’, that appear in data liter-
als within an HTML context are encoded using HTML encoding (“&...;”)
to prevent the injection of rogue HTML tags or attributes.

– JavaScript-code: JavaScript provides the function String.fromCharCode()
which translates a numerical representation into a corresponding character.
To prevent code injection attacks through malicious string-values, all data
literals within a syntactical JavaScript context are transformed into a rep-
resentation consisting of concatenated String.fromCharCode()-calls.

– URLs: All URLs that appear in corresponding HTML attribute values are
encoded using URL encoding (“%..”).

In our J2EE based implementation the external interface’s tasks are integrated
into the application server’s request/response handling. This is realized by em-
ploying J2EE’s filter mechanism to wrap the ServletResponse-object. Through
this wrapper-object servlets can obtain an ELETPrinter. This object in turn pro-
vides an interface which accepts instantiated ELETs as input (see Fig. 4.a). The
serialized HTML-code is then passed to the original ServletResponse-object’s

Secure Code Generation for Web Applications 107

output buffer. Only input received through the ELETPrinter is included in the
final HTML-output. Any values that are passed to the output-stream through
legacy character-based methods is logged and discarded. This way we ensure that
only explicitly generated embedded syntax is sent to the users web browsers.

Implementing the abstraction layer in the form of a J2EE filter has several
advantages. Foremost, no changes to the actual application-server have to be
applied - all necessary components are part of a deployable application. Further-
more, to integrate our abstraction layer into an existing application only minor
changes to the application’s web.xml meta-file have to be applied (besides the
source code changes that are discussed in Section 3.4).

3.4 Practical Evaluation

We successfully implemented a preprocessor, ELET-library, and abstraction layer
for the J2EE application server framework. To verify our implementation’s protec-
tion capabilities, we ran a list of well known XSS attacks [3] against a specifically
crafted test application. For this purpose, we created a test-servlet that blindly
echos user-provided data back into various HTML/JavaScript data- and code-
contexts (see Fig. 8 for an excerpt).

1 protected void doGet(HttpServletRequest req , HttpServletResponse resp)
2 throws IOException
3 {
4 String bad = req.getParameter ("bad");
5 [...]
6 HTMLElet h $=$ <h3 >Protection test </h3> $$
7 h $+$ Text: $data(bad)$
 $$
8 h $+$ Link: link
 $$
9 h $+$ Script: <script >document.write($data(bad)$);</script >
 $$

10 [...]
11 EletPrinter.write(resp , h); // Writing the ELET to the output buffer
12 resp.getWriter (). println(bad); // Is the legacy interface disabled?
13 }

Listing 8. Test-servlet for protection evaluation (excerpt)

Furthermore, to gain experiences on our approach’s applicability in respect to
non-trivial software we modified an existing software project to use our method-
ology. Porting an application to our approach requires to locate every portion of
the application’s source code which utilize strings to create embedded code. Such
occurrences have to be changed to employ ELET semantics instead. Therefore,
depending on the specific application, porting an existing code-base might prove
to be difficult. We chose JSPWiki [5] as a porting target. JSPWiki is a mature
J2EE based WikiWiki clone which was initially written by Janne Jalkanen and
is released under the LGPL. More precisely, we chose version 2.4.103 of the soft-
ware, a release which suffers from various disclosed XSS vulnerabilities [10]. The
targeted version of the code consists of 365 java/jsp files which in total contain
69.712 lines of source code.

The porting process was surprisingly straightforward. JSPWiki’s user-interface
follows in most parts a rather clean version of the Model-View-Controller (MVC)

108 M. Johns et al.

pattern which aided the porting process. Besides the user-interface also the ap-
plication’s Wiki-markup parser and HTML-generator had to be adapted. It took
a single programmer about a week to port the application’s core functionality. In
total 103 source files had to be modified.

As expected, all documented XSS vulnerabilities [10] did not occur in the
resulting software. This resolving of the vulnerabilities was solely achieved by
the porting process without specifically addressing the issues in particular.

Finally, to gain first insight of our approach’s runtime behaviour, we exam-
ined the performance of the prototype. For this purpose, we benchmarked the
unaltered JSP code against the adapted version utilizing the ELET paradigm.
The performance tests were done using the HP LoadRunner tool, simulating
an increasing number of concurrent users per test-run. The benchmarked ap-
plications were served by an Apache Tomcat 5.5.20.0 on a 2,8 GHz Pentium
4 computer running Windows XP Professional. In situations with medium to
high server-load, we observed an overhead of maximal 25% in the application’s
response times (see Fig. 4.c). Considering that neither the ELET’s nor the ex-
ternal interface’s implementation have been specifically optimized in respect to
performance, this first result is very promising. Besides streamlining the actual
ELET implementation, further conceptual options to enhance the implementa-
tion’s performance exist. For instance, integrating the abstraction layer directly
into the application server, instead of introducing it via object wrappers would
aid the overall performance.

4 Related Work

In the last decade extensive research concerning the prevention of code injec-
tion attacks has been conducted. In this section we present selected related
approaches. In comparison to our proposed solution, most of the discussed tech-
niques have the limitations that they are not centrally enforceable and/or are
prone to false positives/negatives. Both characteristics do not apply to our
technique.

Martin Johns/ITSec/2008

PrintWriter

ServletResponse

Processor

Request Response

EletFilter

LogPrintWriterEletPrinter

StringHTMLElet

Log

Web Container

Servlet

secure embedded

code

 0

 20

 40

 60

 80

 100

5 10 25 50 75 100 150 200

C
P

U
 U

sa
ge

in
 %

Users

CPU Usage

JSP
FLET

 0

 10

 20

 30

 40

 50

 60

5 10 25 50 75 100

R
es

po
ns

e
T

im
e

in
 m

s

Users

Server Response Times

JSP
FLET

a. Concept b. CPU overhead c. Response times

Fig. 4. Implementation of the J2EE EletFilter

Secure Code Generation for Web Applications 109

Manual protection and special domain solutions: The currently used
strategy against XSS attacks is manually coded input filtering and output en-
coding. As long as unwanted HTML and JavaScript code is properly detected
and stripped from all generated web pages, XSS attacks are impossible. However,
implementing these techniques is a non-trivial and error prone task which cannot
be enforced centrally, resulting in large quantities of XSS issues. In order to aid
developers to identify XSS and related issues in their code, several information-
flow based approaches for static source code analysis have been discussed, e.g.,
[4], [11], [7], or [23]. However, due to the undecidable nature of this class of
problems such approaches suffer from false positives and/or false negatives.

Manual protection against SQL injection suffers from similar problems as
observed with XSS. However, most SQL interpreters offer prepared statements
which provide a secure method to outfit static SQL statements with dynamic
data. While being a powerful migration tool to avoid SQL injection vulnerabili-
ties, prepared statements are not completely bulletproof. As dynamic assembly
of prepared statements is done using the string type, injection attacks are still
possible at the time of the initial creation of the statement [22]. Furthermore,
methods similar to prepared statements for most other embedded languages be-
sides SQL do not exist yet. Therefore, dynamic assembly of embedded code in
these languages has to employ similar mitigating strategies as mentioned in the
context of XSS, with comparable results.

Type based protection: In concurrent and independent work [19], Robertson
and Vigna propose a type based approach which is closely related to our ELET
paradigm. They introduce dedicated datatypes that model language features of
HTML and SQL. This way they enforce separation of the content and structure
of the created syntax, two concepts that are similar to this paper’s terms data
and code.

However, their approach is not easily extensible to general purpose program-
ming languages, such as JavaScript. Consequently, cross-site scripting caused
by insecure dynamic assembly of JavaScript code (e.g., see Listing 8, line 9) is
not prevented. In comparison, our approach is language independent and, thus,
covers dynamically assembled JavaScript. Furthermore, notably absent from the
paper is a discussion concerning the actual construction of the embedded code.
For example, it is not explained, how the programmer creates HTML syntax in
practice. As previously discussed, we consider such aspect to be crucial in regard
to acceptance of the developer community.

Taint propagation: Run-time taint propagation is regarded to be a powerful
tool for detecting string-based code injection vulnerabilities. Taint propagation
tracks the flow of untrusted data through the application. All user-provided
data is “tainted” until its state is explicitly set to be “untainted”. This allows
the detection if untrusted data is used in a security sensible context. Taint prop-
agation was first introduced by Perl’s taint mode. More recent works describe
finer grained approaches towards dynamic taint propagation. These techniques

110 M. Johns et al.

allow the tracking of untrusted input on the basis of single characters. In inde-
pendent concurrent works [16] and [18] proposed fine grained taint propagation
to counter various classes of injection attacks. [2] describes a related approach
(“positive tainting”) which, unlike other proposals, is based on the tracking of
trusted data. Furthermore, based on dynamic taint propagation, [21] describe an
approach that utilizes specifically crafted grammars to deterministically identify
code injection attempts. Finally, [24] proposes a fine grained taint mechanism
that is implemented using a C-to-C source code translation technique. Their
method detects a wide range of injection attacks in C programs and in lan-
guages which use interpreters that were written in C. To protect an interpreted
application against injection attacks the application has to be executed by a
recompiled interpreter.

Compared to our approach, dynamic taint propagation provides inferior pro-
tection capabilities. Taint-tracking aims to prevent the exploitation of injection
vulnerabilities while their fundamental causes, string-based code assembly and
the actual vulnerable code, remain unchanged. Therefore, in general the sani-
tazion of the tainted data still relies on string operations. The application has to
“untaint” data after applying manually written validation and encoding function,
a process which in practice has been proven to be non-trivial and error-prone.
This holds especially true in situations where limited user-provided HTML is per-
mitted. E.g., no taint-tracking solution would have prevented the myspace.com
XSS that was exploited by the Samy-worm [8]. In our approach, even in cases
where user-provided HTML is allowed, such markup has to be parsed from the
user’s data and recreated explicitly using ELET semantics, thus, effectively pre-
venting the inclusion of any unwanted code. Furthermore, unlike our approach
taint-tracking is susceptible to second-order code injection vulnerabilities [17]
due to its necessary classification of data origins as either trusted or untrusted.
In the case of second-order code injection the attacker is able to reroute his at-
tack through a trusted component (e.g., temporary storage of an XSS attack in
the DB).

Embedded language integration: Extensive work has been done in the do-
main of specifically integrating a certain given embedded language into hosting
code. Especially SQL and XML-based languages have received a lot of attention.
However, unlike our approach, the majority of these special purpose integration
efforts neither can be extended to arbitrary embedded languages, nor have been
designed to prevent code injection vulnerabilities. In the remainder of this section
we describe selected publications that share similarities with our approach:

As previously discussed in Section 2.3, LINQ [13] promotes subsets of XML
and SQL to be first class members of C#. Furthermore, E4X [20] is a related
approach which integrates XML into JavaScript. The applied techniques are
entirely data-centric with the goal to soften the object-relational impedance
mismatch [14]. Due to this characteristic, their approach is not easily extensi-
ble to procedural embedded languages, such as JavaScript. In comparison, our
approach is completely independent from the characteristics of the embedded

myspace.com

Secure Code Generation for Web Applications 111

language. [12] describes SQL DOM. A given database schema can be used to au-
tomatically generate a SQL Domain Object Model. This model is transformed
to an API which encapsulates the capabilities of SQL in respect to the given
schema, thus eliminating the need to generate SQL statements with the string
datatype. As every schema bears a schema-specific domain object model and
consequently a schema-specific API, every change in the schema requires a re-
generation of the API. Finally, SQLJ [1] and Embedded SQL [15], two inde-
pendently developed mechanisms to combine SQL statements either with Java
or C respectively, employ a simple preprocessor. However, unlike our proposed
approach these techniques only allow the inclusion of static SQL statements in
the source code. The preprocessor then creates hosting code that immediately
communicates the SQL code to the database. Thus, dynamic assembly and pro-
cessing of embedded syntax, as it is provided in our proposed approach via the
ELET, is not possible.

5 Conclusion

In this paper we proposed techniques to enhance programming languages with
capabilities for secure and explicit creation of embedded code. The centerpiece
of our syntax-assembly architecture is the ELET (see Section 2.3), an abstract
datatype that allows the assembly and processing of embedded syntax while
strictly enforcing the separation between data and code elements. This way in-
jection vulnerabilities that are introduced by implicit, string-serialization based
code-generation become impossible. To examine the feasibility of the proposed
approach, we implemented an integration of the embedded languages HTML and
JavaScript into the Java programming language. Usage of our approach results in
a system in which every creation of embedded syntax is an explicit action. More
specifically, the developer always has to define the exact particularities of the as-
sembled syntax precisely. Therefore, accidental inclusion of adversary-provided
semantics is not possible anymore. Furthermore, the only way to assemble em-
bedded syntax is by ELET, which effectively prevents programmers from taking
insecure shortcuts. A wide adoption of our proposed techniques would reduce
the attack surface of code injection attacks significantly.

Acknowledgements

We wish to thank Erik Meijer for giving us valuable feedback and insight into
LINQ.

References

1. American National Standard for Information Technology. ANSI/INCITS 331.1-
1999 - Database Languages - SQLJ - Part 1: SQL Routines using the Java (TM)
Programming Language. InterNational Committee for Information Technology
Standards (formerly NCITS) (September 1999)

112 M. Johns et al.

2. Halfond, W.G.J., Orso, A., Manolios, P.: Using positive tainting and syntax-aware
evaluation to counter sql injection attacks. In: 14th ACM Symposium on the Foun-
dations of Software Engineering, FSE (2006)

3. Hansen, R.: XSS (cross-site scripting) cheat sheet - esp: for filter evasion,
http://ha.ckers.org/xss.html (05/05/07)

4. Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., Kuo, S.-Y.: Securing web
application code by static analysis and runtime protection. In: Proceedings of the
13th conference on World Wide Web, pp. 40–52. ACM Press, New York (2004)

5. Jalkanen, J.: Jspwiki. [software], http://www.jspwiki.org/
6. Johns, M., Beyerlein, C.: SMask: Preventing Injection Attacks in Web Applications

by Approximating Automatic Data/Code Separation. In: 22nd ACM Symposium
on Applied Computing (SAC 2007) (March 2007)

7. Jovanovic, N., Kruegel, C., Kirda, E.: Pixy: A static analysis tool for detecting web
application vulnerabilities. In: IEEE Symposium on Security and Privacy (May
2006)

8. Kamkar, S.: Technical explanation of the myspace worm (October 2005),
http://namb.la/popular/tech.html (01/10/06)

9. Klein, A.: DOM Based Cross Site Scripting or XSS of the Third Kind (September
2005),
http://www.webappsec.org/projects/articles/071105.shtml (05/05/07)

10. Kratzer, J.: Jspwiki multiple vulnerabilitie. Posting to the Bugtraq mailinglist
(September 2007), http://seclists.org/bugtraq/2007/Sep/0324.html

11. Livshits, B., Lam, M.S.: Finding security vulnerabilities in java applications using
static analysis. In: Proceedings of the 14th USENIX Security Symposium (August
2005)

12. McClure, R.A., Krueger, I.H.: Sql dom: compile time checking of dynamic sql
statements. In: Proceedings of the 27th International Conference on Software En-
gineering (2005)

13. Meijer, E., Beckman, B., Bierman, G.: LINQ: Reconciling Objects, Relations, and
XML In the.NET Framework. In: SIGMOD 2006 Industrial Track (2006)

14. Meijer, E., Schulte, W., Bierman, G.: Unifying tables, objects, and documents.
In: Declarative Programming in the Context of OO Languages (DP-COOL 2003),
vol. 27. John von Neumann Institute of Computing (2003)

15. MSDN. Embedded sql for c,
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/

esqlforc/ec 6 epr 01 3m03.asp (27/02/07)
16. Nguyen-Tuong, A., Guarnieri, S., Greene, D., Shirley, J., Evans, D.: Automatically

hardening web applications using precise tainting. In: 20th IFIP International In-
formation Security Conference (May 2005)

17. Ollmann, G.: Second-order code injection. Whitepaper, NGSSoftware Insight Se-
curity Research (2004),
http://www.ngsconsulting.com/papers/SecondOrderCodeInjection.pdf

18. Pietraszek, T., Berghe, C.V.: Defending against injection attacks through context-
sensitive string evaluation. In: Valdes, A., Zamboni, D. (eds.) RAID 2005. LNCS,
vol. 3858, pp. 124–145. Springer, Heidelberg (2006)

19. Robertson, W., Vigna, G.: Static Enforcement of Web Application Integrity
Through Strong Typing. In: USENIX Security (August 2009)

20. Schneider, J., Yu, R., Dyer, J. (eds.): Ecmascript for xml (e4x) specification. ECMA
Standard 357, 2nd edn. (December 2005),
http://www.ecma-international.org/publications/standards/Ecma-357.htm

http://ha.ckers.org/xss.html
http://www.jspwiki.org/
http://namb.la/popular/tech.html
http://www.webappsec.org/projects/articles/071105.shtml
http://seclists.org/bugtraq/2007/Sep/0324.html
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/esqlforc/ec_6_epr_01_3m03.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/esqlforc/ec_6_epr_01_3m03.asp
http://www.ngsconsulting.com/papers/SecondOrderCodeInjection.pdf
http://www.ecma-international.org/publications/standards/Ecma-357.htm

Secure Code Generation for Web Applications 113

21. Su, Z., Wassermann, G.: The essence of command injection attacks in web appli-
cations. In: Proceedings of POPL 2006 (January 2006)

22. von Stuppe, S.: Dealing with sql injection (part i) (February 2009),
http://sylvanvonstuppe.blogspot.com/2009/02/

dealing-with-sql-injection-part-i.html (04/24/09)
23. Wassermann, G., Su, Z.: Static detection of cross-site scripting vulnerabilities. In:

Proceedings of the 30th International Conference on Software Engineering, Leipzig,
Germany, May 2008. ACM Press, New York (2008)

24. Xu, W., Bhatkar, S., Sekar, R.: Taint-enhanced policy enforcement: A practical
approach to defeat a wide range of attacks. In: 15th USENIX Security Symposium
(August 2006)

http://sylvanvonstuppe.blogspot.com/2009/02/dealing-with-sql-injection-part-i.html
http://sylvanvonstuppe.blogspot.com/2009/02/dealing-with-sql-injection-part-i.html

	Secure Code Generation for Web Applications
	Introduction
	The Root of String-Based Injection Vulnerabilities
	The String Is the Wrong Tool!
	Contributions and Paper Outline

	Concept Overview
	Keeping the Developers Happy
	Key Components
	The Embedded Language Encapsulation Type (ELET)
	Language Integration
	External Interface
	Limitations

	Practical Implementation and Evaluation
	Choosing an Implementation Target
	API and Preprocessor Design
	Adding an External Interface for HTML Creation to J2EE
	Practical Evaluation

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

