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ABSTRACT
Consumption traces collected by Smart Meters are highly
privacy sensitive data. For this reason, current best prac-
tice is to store and process such data in pseudonymized
form, separating identity information from the consump-
tion traces. However, even the consumption traces alone
may provide many valuable clues to an attacker, if com-
bined with limited external indicators. Based on this obser-
vation, we identify two attack vectors using anomaly detec-
tion and behavior pattern matching that allow effective de-
pseudonymization. Using a practical evaluation with real-
life consumption traces of 53 households, we verify the feasi-
bility of our techniques and show that the attacks are robust
against common countermeasures, such as resolution reduc-
tion or frequent re-pseudonymization.

1. INTRODUCTION
The deployment of Smart Metering—the digital recording

and processing of electricity consumption—is ever increas-
ing. A Smart Meter is an electrical meter that records a
fine-grained consumption trace of a household and sends it
to the respective electricity supplier. These consumption
traces, in contrast to traditional single annual consumption
values, allow the realization of time-of-use tariffs and de-
mand response schemes.

This flexibility, however, comes at a price. Every activity
that takes place in the household and makes use of elec-
trical appliances is reflected in the consumption trace. In
consequence, Smart Metering has repeatedly been called a
privacy invasion into households [7, 8] and a large body of
previous work [5, 6, 11, 12, 14, 15, 20] has been concerned
with inferring private information from energy consumption
traces.

Based on the identified privacy implications, there is con-
sensus that consumption data of Smart Metering needs to
be adequately protected. Such protection entails the pro-
tection during storage by the supplier and during the use of
the data by the supplier and 3rd party contractors. Pseudo-
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nymization of consumption traces is considered an effective
defense against privacy attacks, as it allows for unlinking the
identity of the household and its consumption trace. The
consumer’s identity can be stored independently from con-
sumption traces, only linked by the pseudonym. In such
a scenario, the privacy-invading methods developed in pre-
vious work can only be applied by the owner of both, the
identity database and the consumption traces.

An attacker faces two problems, if he has only access to
pseudonymized traces: First, deduction from pseudonymous
consumption traces is error-prone as no identity information
can be used as contextual data. Second and more impor-
tant, all information inferred from consumption traces can
not be attributed to a specific household due to the unlink-
ability introduced by pseudonymization. This makes con-
sumption traces and its contained information unattractive
for targeted abuse and apparently the consumers’ privacy is
protected.

In this paper, we develop two attack vectors targeting
the privacy of pseudonymized consumption traces. The first
attack allows to create a link between a household’s iden-
tity and its consumption trace, and therefore enables an at-
tacker to undo pseudonymization. If successful, this attack
allows all existing deduction attacks to be applied again.
The second method enables an attacker to track the origin
of a consumption trace across re-pseudonymization or across
different databases. For conducting these attacks in prac-
tice, we provide a data analysis framework that allows an
attacker to apply either method to consumption databases.

The paper’s main contributions are as follows:

1. An abstract definition of attack vectors on the unlink-
ability of pseudonymous Smart Metering consumption
traces.

2. A machine learning framework for the analysis of con-
sumption traces and subsequent execution of afore-
mentioned attack vectors.

3. Experimental findings about the anomaly detection in
consumption traces and the tracking of consumption
traces across pseudonyms.

4. An evaluation of different mitigation techniques with
respect to their effectiveness against those attacks.

The rest of this paper is structured as follows: In Sec-
tion 2 we provide an overview of the terminology used in this
paper. Section 3 describes the two attack vectors that we
identified for de-pseudonymization. In Section 4, we present



a data analysis framework for conducting these attacks in
practice. Section 5 shows our experimental results regard-
ing the applicability of our attacks. Approaches for limiting
linkability like reduced resolution, frequent re-pseudonymi-
zation and cryptography solutions are discussed in Section
6. Finally, in Section 7 we discuss related work before we
conclude in Section 8.

2. TERMINOLOGY AND ASSUMPTIONS
This paper’s understanding of identity, pseudonymity and

other privacy related terms is based on terminology defini-
tions provided by Pfitzmann and Hansen [19].

In the following we will use the term consumption trace for
a recording of electric consumption in discrete time slots of
equal length. The resolution of a consumption trace is the
number of time slots per day. The term consumer stands
for the household that makes use of the utility that is mea-
sured by a Smart Meter. The subject supplier stands ex-
emplary for any subject (actual supplier or grid operator)
that participates in Smart Metering and has legitimate in-
terest in consumption traces, e.g. for billing electricity con-
sumption. The Smart Meter records the consumption con-
stantly and communicates it to the supplier. The Smart
Meter, respectively the consumption trace, are attributed
with a pseudonym for the consumer. This pseudonym is
pre-arranged by the supplier and non-public.

The supplier stores consumption traces by pseudonym in
a consumption trace database. The supplier accesses this
database for billing or analysis in general. Contractors of
the supplier also have access to this database but not to
the identity database. Contractors provide analysis services
to suppliers based on pseudonymized consumption traces.
For the purpose of invoice creation the supplier owns an-
other database, the identity database, that connects the con-
sumer’s identity with the pseudonym.

Optionally, a supplier may re-pseudonymize a consump-
tion trace repeatedly, creating a 1 to n relationship between
identities and pseudonyms. Consumers can switch suppliers
which leads to the following situation: They have an old con-
sumption trace, identity information and linking pseudonym
in the old supplier’s databases and also a current consump-
tion trace and new pseudonym together with their identity
information in their new supplier’s databases. Contractors
and suppliers may behave semi-honest, i.e, they stick to the
protocols and respective laws but try to learn as much about
consumers as possible. Our attacker model includes contrac-
tors, suppliers but also external malicious agents that might
illegally obtain consumption traces.

3. ATTACK DESCRIPTION
The final goal of our attacker model is to create a link be-

tween the identity of consumers and their energy consump-
tion. To this end, we present two different attacks that can
be applied to achieve this goal. We name the attacks: linking
by behavior anomaly and linking by behavior pattern.

Once a link between a consumption trace and a specific
household has been established all information contained in
the trace can be attributed to this household. If, on the
other hand, a consumption trace cannot be linked to one
household with a significant higher probability than to an-
other household, this means that the data and its contained
information cannot be attributed to a single household. In

this case, the contained information would not have a pri-
vacy impact on its origin. Thus, linkability is a sufficient
condition for privacy loss in Smart Metering.

3.1 Linking by Behaviour Anomaly
Linking by behavior anomaly (LA) can be used by the

attacker to link either an identity to a consumption trace
or two consumption traces with each other (see Figures 1
and 2). This is accomplished by identifying and correlating
anomalies in both data sources that occur at the same time.

We characterize an anomaly as a series of unusual events,
where an event is some consumer behavior that is reflected
in the energy consumption of the respective household. The
rarity of an anomaly is based on different factors: Length of
the series, the resolution of the time stamp (day, hours or
minutes) and rarity of the singular events among the pop-
ulation of consumption traces under consideration. Length
and resolution make up for singular events that happen very
often among the population: Leaving home or coming home
at slightly different times during the course of one week. On
the other hand, there are events that neither require a series
nor a high resolution: moving in/out, death/birth or holi-
days. A series of events for a low resolution can be observed
if household inhabitants leave every weekend or stay at home
always at specific work days. Here the rarity originates from
the length of the series.

With respect to linking a consumption trace to an identity,
LA can be used in both ways. Either identifying the house-
hold for a consumption trace or vice versa. It really depends
on the final purpose of the identification which approach is
taken, whether specific households should be targeted (like
both examples in Section 3.3) or specific consumption pro-
files are of interest. The main requirement for this attack is
to have two data sources that overlap for the time interval
where an anomaly has been identified.

Figure 1: Behavior and consumption anomaly



Figure 2: Anomalies in two consumption traces

3.2 Linking by Behavior Pattern
The goal of linking by behavior pattern (LP) is to link

different pseudonyms of one consumer (see Figure 3). There
are two reasons for one consumer to have different pseudo-
nyms attached to his identity: Either one supplier re-pseudo-
nymizes his consumption trace database or the consumer
has consumption traces in different databases with different
pseudonyms respectively. The latter happens when a con-
sumer changes his supplier. The old supplier still possess
the consumption trace with one pseudonym and the new
supplier starts to collect a consumption trace under a new
pseudonym. This is equivalent to tracking consumers across
different databases.

The former case, re-pseudonymization, means that a con-
sumer’s traces are stored under the pseudonym A in time
interval t and stored under pseudonym B in time interval
t + 1 in the same database. This method could be applied
by suppliers to prevent the de-pseudonymization of many
years of consumption profiles under the same pseudonym in
case one pseudonym is de-pseudonymized.

For this attack the attacker requires a database of pseu-
donymized consumption traces containing the pseudonym
A. He tries to find a consumption trace with pseudonym
B that has been created by the same consumer. Then the
attacker can link the pseudonym A with pseudonym B.

In contrast to the LA attack, this attack can be applied
even if the data sources do not overlap in time. This is
because fundamental patterns in consumption are identified
and subsequently looked for in the other data source. This
means, that we can either consider consumption slices from
two different consumption trace databases or two consump-
tion traces from the same database but from different time
intervals.

The feasibility of such an attack would also imply that
everyone possessing current consumption traces and links
to consumer identities can harvest all consumption traces
that have been published (even in anonymized form) in the
past or can be obtained for the past. On the other hand,
legitimate holders of old consumption trace databases and

Figure 3: Identifying consumption traces with the
same origin

the corresponding identities are able to ”de-anonymize” data
traces that are publicized in the future.

3.3 Exemplified Attacks
There is a multitude of attack scenarios that involve link-

ing Smart Meter data and contained information to their
origin household. We herein provide two examples:

Fake sick-day disclosure.
An employer could attempt to spy on his employees. In

particular, he would like to know whether employees really
spend their sick days at home. In order to do that, the em-
ployer obtains pseudonymized consumption traces for con-
sumers in the geographic region of his employees’ house-
holds. Using a correlation of vacation/company travel data
with the consumption trace he links his employees’ identities
to the respective pseudonymized consumption traces. Then
the employer can try to derive employee behavior on sick
days from the employee’s consumption trace.

Absence pattern deduction.
Another motivation for linking a household to its con-

sumption trace is preparing a burglary [17]. Once a burglar
has identified a worthwhile victim in the physical world, the
burglar would like execute his plans undisturbed by the in-
habitants. The burglar therefore performs an observation
of the household in question and their weekend behavior.
He simply finds out whether they stay at home or leave for
the weekend over the course of several weeks. By correlat-
ing this information with a consumption trace database this
household’s trace can be identified in the database. Now, re-
peating long-term absence patterns of this household can be
found, e.g. for a regular family meeting or a time share, and



subsequently the burglary can be scheduled for such a date.
Traditionally, a burglar would need to observe a household
for years to get these information. The linking of household
identity and its consumption trace, however, allows him to
tap into a wealth of information about a long time-frame of
the household in question.

4. DATA ANALYSIS FRAMEWORK
So far we have studied the linking of consumption traces

and consumer identities in an abstract manner. For conduct-
ing the presented attacks in practice, we now introduce a
data analysis framework. This framework builds on concepts
of machine learning and allows us to analyze consumption
traces geometrically. To this end, the consumption trace of
a consumer is mapped to a high-dimensional feature space,
such that it can be analyzed by standard techniques of ma-
chine learning. In this geometric representation, the link-
ing by behavior anomaly can be achieved using geometric
anomaly detection, where unusual events are identified by
a large distance from normal activity. Similarly, the linking
by behavior pattern can be carried out using geometric clas-
sification, where the behavior of one consumer is separated
from all other users in the feature space. Figure 4 illustrates
this geometric interpretation of the two attacks.

µ φ(z)

(a) Anomaly detection

w
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−

(b) Classification

Figure 4: Schematic depiction of data analysis:
(a) distance to mean; (b) separating hyperplane.

Before presenting this data analysis framework, we intro-
duce some basic notation. We refer to the known consump-
tion trace of a consumer by X = {x1, . . . , xn}, where X
covers n days and each xi corresponds to the measurements
of one day. Depending on the resolution d of Smart Meter-
ing, each xi is represented by a vector of d dimensions

xi =
(
m1, . . . ,md

)
,

where mj is the consumption measured at the j-th time slot
of the Smart Metering resolution. Moreover, if we consider
a grid of g bins associated with consumption values, we say
that mj falls into bin k, if mj has the smallest difference to
the consumption value associated with the k-th bin.

4.1 A Binary Feature Space
Mapping consumption traces to a vector space may seem

trivial at a first glance, as the measurements of a day are
already represented as a d-dimensional vector. However, for
discriminating different patterns in this data, we require a
more advanced representation that emphasizes the charac-
teristics of each consumer and provides an expressive basis
for application of machine learning.

Depending on the setup of electronic devices in a house-
hold, the consumption of a consumer changes between dif-
ferent states. Devices are switched on and off; thereby the

consumption moves from one state to another. This discrete
behavior is illustrated in Figure 5, which shows the consump-
tion of one user over the period of one week on a fixed grid.
Dark entries in the grid indicate frequent occurrences of a
consumption value. It is notable that the consumption is
neither a continuous nor a smooth function and several dis-
crete states can be observed. For example, between 10:00
o’clock and 11:00 o’clock the consumption matches one of
three possible states at roughly 300, 900 and 1500 W/h re-
spectively.
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Figure 5: Grid representation of a consumption
trace. Dark color indicates frequent occurrences.

Inspired by this observation, we construct a feature space
that specifically reflects these states of consumption data. In
particular, we employ a grid of g bins that spans the range
of observable consumption values. Using this grid we define
an indicator function Ij,k

Ij,k(x) =

{
1 if mj falls into bin k

0 otherwise.
(1)

that returns 1, if the j-th measurement of a day x falls into
the k-th bin of our grid, and 0 otherwise.

If we compute the indicator function Ij,k for all d mea-
surements of a day and all g bins of the grid, we obtain a
mapping

φ : X 7→ Rd·g, φ(x) =
(
Ij,k(x)

)
1≤j≤d
1≤k≤g

(2)

that maps the consumption of one day to a binary feature
space with d · g dimensions. For example, if we have one
measurement per hour, that is d = 24, and use a grid with
g = 100, we embed the data in a feature space of 2,400 bi-
nary features, each corresponding to a particular consump-
tion value at a particular hour. In contrast to a naive rep-
resentation with d dimensions, this feature space describes
states independently of absolute differences. That is, each
state change induced by the consumer is treated equally,
whether it involves switching on a small desk lamp or a pow-
erful washing machine. For the experiments in Section 5, we
consider d = 24 and make use of a grid with 100 bins of con-
sumption values.

4.2 Anomaly Detection
By embedding the consumption traces into an expressive

feature space, we are able to phrase our attacks in terms of
geometric relationships between data points. For determin-
ing unusual activity in the data of a consumer we employ a
standard technique for detecting geometric outliers. Given
a consumption trace of n consecutive days, we first learn a



profile of normal activity by computing the mean µ of the
data in the feature space as follows

µ =
1

n

n∑
i=1

φ(xi). (3)

The profile µ captures the states shared by the majority of
the consumption traces. As each vectors φ(xi) contains only
binary values, each dimensions of µ can be interpreted as the
probability for observing a particular grid value at particular
time of the day. Geometrically, the deviation of a day z
from this profile can be determined by simply computing
the distance

d(z) = ||φ(z)− µ||. (4)

Note that d(z) corresponds to the Euclidean distance in the
vector space and can be efficiently computed with standard
software libraries. This generic approach to anomaly de-
tection is illustrated in Figure 4(a). If we notice a large
distance d(z) for a day z, some of the consumption states of
this day differ from normal activity and z is likely to contain
an anomalous event.

This technique for computing profiles can also be applied
to compare different sets of consumption traces. For ex-
ample, if we have two reference sets X1 and X2 from the
same consumer, we can compute two mean values µ1 and µ2

and compare the distance to both. This setting allows us to
study different classes of days during analysis, as shown in
Section 5 for weekdays and weekends.

4.3 Classification
For linking by behavior pattern, we aim at inferring pat-

terns from the consumption trace of a consumer. However,
we are not interested in modelling the complete behavior
of a consumer, but determining patterns that discriminate
his behavior from others. Thus, we employ the technique of
classification and learn a discrimination between users. A
robust method for learning such a discrimination is a Sup-
port Vector Machine (SVM) [2, 16]. An SVM basically de-
termines a hyperplane in the feature space that separates
two classes with maximum margin. This geometric concept
is illustrated in Figure 4(b). The hyperplane is constructed
as a linear combination of the training data and separates
the consumption trace of one consumer c from all others.
Formally, this hyperplane is given by a direction vector

wc =

n∑
i=1

yiαiφ(xi) (5)

and an offset term bc, where yi ∈ {−1,+1} are training
labels indicating whether day xi corresponds to consumer c
and αi are the learned coefficients.

To account for multiple consumers, we make use of the
one-against-all approach and learn a hyperplane for each
consumer separating him from the rest of users. The dis-
crimination function for each consumer is then given by

hc(z) = 〈φ(z), wc〉+ bc. (6)

The function hc(z) reflects the distance from day z to the hy-
perplane of consumer c. The more consumption states and
patterns are shared with c, the higher hc(z) gets. Hence,
if we want to link a day z to a consumer, we simply as-
sign it to those consumer c with the largest value for hc(z).

Similarly to the anomaly detection, there exists several ef-
ficient libraries for computing SVMs. In our experiments,
we make use of LibLinear [4]—a library capable of learning
with millions of dimensions and data points.

5. EXPERIMENTAL EVALUATION
To study the impact of our attacks in practice, we conduct

experiments using anonymized consumption traces for 53
households. The data stretches over 221 days and has a
resolution of one value per hour. The goal of the experiments
is to demonstrate the efficacy of the two attacks described
in Section 3. However, due to privacy reasons we do not
have identity data for the consumption traces and therefore
cannot fully implement the LA attack. Yet, we can identify
significant anomalies in the consumption trace that could
greatly help in linking identities to pseudonyms.

5.1 Identification of Anomalies
In our first experiment, we apply the technique of anomaly

detection to each of the 53 consumers. We are interested in
identifying days that stand out of regular energy consump-
tion and might provide a good basis for linking the consump-
tion data with an external data source.
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(a) Anomaly detected for consumer 21.
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(b) Anomaly detected for consumer 49.

Figure 6: Exemplary anomalies for two consumers.
The shaded area indicates the standard deviation.

Figure 6(a) shows exceptionally high energy consumption
throughout the day, probably in the course of Christmas
preparations. Depending on the amount of time this con-
sumption trace spans this could mean different things: If
the trace spans several years (which our specific data source
does not) this would indicate that this consumer has not has
had such extensive Christmas preparations because he/she
previously went away for Christmas or celebrates Christmas
for the first time at home. As this particular trace only



spans approximately 7 months, this deviation just indicates
that the 25th of December means something special to this
household, which could in turn indicate that it is Christian.
Depending on the context of this household this could mean
incriminating information.

Figure 6(b) displays how a consumer apparently starts
energy consumption shortly before 9 o’clock. This may in-
dicate that the consumer has moved in and started the first
electric devices in his new apartment. In the afternoon ex-
ceptionally high load can be observed, consistent with the
use of machines by craftsmen. If one could correlate this
data with data sources that hold information about moving
households in this region this could lead to the identification
of the inhabitants.

While we have shown only two strong anomalies from our
data set, several others can be identified for the consumers.
Provided external reference data, it is trivial to correlate
these anomalies with unusual events and there is a realistic
chance of unlinking pseudonyms.

As mentioned in Section 3.1, anomalies can also be iden-
tified using different profiles of consumption. In this second
experiment, the consumption on workdays and weekends are
analyzed to determine whether the household inhabitants
stay or leave home. In particular, we compare the profile
of weekends and workdays to identify workdays that match
the consumption behavior of weekends.
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(a) Profiles for consumer 12 and “day-off”.
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(b) Profiles for consumer 40 and “day-off”.

Figure 7: Exemplary weekday and weekend profiles.
The red line indicates a potential “day off”.

Figure 7(a) displays how usual workday and weekend pro-
file look like for a consumer. For the 24th of May however,
we can identify a day that matches a weekend day judging
by its energy consumption but is a Monday (workday). Fig-
ure 7(b) shows the same for another consumer for the 7th
of December 2009 which is a Thursday.

It is notable that for the given resolution of Smart Me-
tering accurate profiles can be learned for the consumption
data. While we have shown examples for comparing week-
ends and weekdays, several other scenarios exist that would
allow to further structure and analyze the electricity con-
sumption of a household. Together with the anomaly de-
tection, these analysis steps clearly allow to narrow down
the search for a particular identity and help to unlink its
pseudonym.

5.2 Linking by Behavior Pattern
In this experiment we conduct the LP attack by using

the classification technique from Section 4.3 to determine
whether consumption traces have the same origin house-
hold. We use one time interval of our consumption trace
database for training our machine learning framework and
subsequently provided it with test data from a different, non-
overlapping time interval. The algorithm implemented by
the framework then tries to link consumption traces that
behave similarly. We measure its accuracy by the relative
frequency of correct linking decisions.
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Figure 8: Classification accuracy for varying sizes of
test data (a) and individual users (b).

Figure 8(a) displays linking accuracies for training data
of 60 days in dependency of test data size, where we as-
sume fixed pseudonyms during the given time spans. The
graph steadily climbs to over 90% accuracy for 30 days of
test data. Figure 8(b) represents a breakdown of the linking
accuracy for testing data of 14 days. For several pseudonyms
an almost perfect unlinking is possible and on average an ac-
curacy of 83% is attained, corresponding to 5 correct iden-
tifications out of 6 consumers. Note that pseudonym 30 un-
dergoes significant perturbations over the course of our data



which leads to repeated mis-classification and subsequently
zero accuracy.

Figure 9 displays the accuracy of our approach depending
on the sizes of the training set and the test data in days.
One can see, that the size of the test data has a slightly
stronger impact on the accuracy then the size of the training
data. Overall, the accuracy reaches approximately 83% if
the training and test data is larger than 28 days. As a
result, our attack is even effective if a re-pseudonymization
is conducted every month.
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Figure 9: Impact of training and testing data size
on classification accuracy.

6. MITIGATION TECHNIQUES
We finally investigate in this section three mitigation al-

ternatives and their ability to contain and mitigate the afore-
mentioned attacks.

6.1 Lower Resolution
A simple yet promising approach to mitigating our attacks

is to lower the resolution of Smart Metering. The idea be-
hind is that consumption traces are blurred and therefore
anomalies and patterns are covered. In order to evaluate
this mitigation technique we scale the consumption traces
down in several steps and executed our experiments on the
down-scaled data.

Figure 10 represents our anomaly detection for resolutions
of 6, 3 or 1 value per day for the anomaly that was identified
in Figure 6(a). One can see that the anomaly remains visi-
ble, even if the Smart Meter only records one value per day.
The reason for this is that the anomaly spanned a larger part
of the day and hence had a high impact on the total energy
consumption of that day. Figure 11 shows an anomaly that
behaves differently. While for resolutions of 6 or 3 values per
day the anomaly still can be identified, it is not recognizable
in the 1 value per day.

Regarding the LP attack the reduction of Smart Metering
resolution has a bigger effect. Figure 12 shows the linking
accuracy in dependency of the test data size for different
resolutions. In contrast to Figure 9 the linking accuracy
drops significantly with a reduction of the resolution. While
the accuracy still reaches almost 70% for 8 measurements
per day it drops to approx. 4% for one measurement a day.

These results show that a reduction of the Smart Meter-
ing resolution has mixed effects on our attacks. For anomaly
detection (and subsequent anomaly linking) the attacker
will probably be still quite successful if he manages to find
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Figure 12: Classification accuracy with different res-
olution. The accuracy is given for resolutions of 8
(.), 6 (/), 3 (◦) and 1 (�) value per day.

anomalies that have a big impact on the total energy con-
sumption. However, short bursts of energy consumption will
not be recognizable at low resolutions. Moreover, our results
show that the LP attack can be successfully mitigated. The
linking accuracy drops significantly with every reduction of
the resolution.

Whether lower resolutions are a viable mitigation also de-
pend on the supplier’s requirements: The resolution of real-
time tariffs and time-of-use prices is limited by the chosen
Smart Metering resolutions.

6.2 Frequent Re-pseudonymization
Re-pseudonymization could be considered another miti-

gation technique. The holder of the identity and consump-
tion databases introduces new pseudonyms for identities ev-
ery now and then. Subsequently arriving consumption trace
items of a household will be recorded under the new pseudonym.
This leads to the effect that a holder of only the consump-
tion trace database has only short intervals of data per
pseudonym. Which means, that the training set for the LP
attack is limited by the re-pseudonymization time frame.

If we assume that the attacker tries to track origins of con-
sumption traces across re-pseudonymization he would try to
match two data sets of different pseudonyms to determine
whether they belong to the same origin. If we assume that
the re-pseudonymization time frame is constant then the size
of the training set and test set are the same. The potential
effect on the LP attack can be seen in Figure 9.

Even if the re-pseudonymization time frame has only 20
days we can link two pseudonyms of the same identity with
80% accuracy. Thus, for the method to be effective one
would need to re-pseudonymize in very short intervals. There
are two major drawbacks of re-pseudonymization: First,
analysis over frequently re-pseudonymized consumption traces
can only span intervals of the re-pseudonymization time
frame. Analysis by contractors that requires long-term con-
sumption data is not possible because they would need in-
formation about the pseudonymization for that. Second,
frequent re-pseudonymization incurs an overhead of storing
the linking between the different pseudonyms and the iden-
tity.

6.3 Privacy-preserving Techniques
Another mitigation technique is the prevention of trans-

mitting and storing consumption traces in the first place.
The approaches described in [9] or [21] reduce the amount
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Figure 10: Anomaly detection with different resolution. The detected anomaly from Figure 10(a) is shown.

0 3 6 9 12 15 18 21
0

500

1000

1500

Time of day

C
o

n
s
u

m
p

ti
o

n
 (

W
/h

)

 

 

Weekday

Weekend

24.5.10

(a) 6 values per day.

0 3 6 9 12 15 18 21
0

500

1000

Time of day

C
o

n
s
u

m
p

ti
o

n
 (

W
/h

)

 

 

Weekday

Weekend

24.5.10

(b) 3 values per day.

0 3 6 9 12 15 18 21
0

200

400

600

800

Time of day

C
o

n
s
u

m
p

ti
o

n
 (

W
/h

)

 

 

Weekday

Weekend

24.5.10

(c) 1 value per day.

Figure 11: Weekday and weekend profiles with different resolution. The profiles from Figure 7(a)) are shown.

of data that is effectively intelligible by the suppler to one
value per reporting interval. This value represents the price
for the energy consumption of this day. It allows application
of high-resolution time-of-use or real-time prices and can be
used to just report one value per year if desired. This way it
combines the advantages of a very low resolution (one value
per year) and the application of demand response tariffs.

It is noteworthy, that the single value per reporting inter-
val does contain a weighting of the energy consumption by
the applicable tariff. Therefore it contains more information
than a single consumption value of similar low-resolution
strategy. However, its applicability is constrained to billing
and cannot be used for forecasting since the tariff skews the
actual consumption.

7. RELATED WORK

Attacks on Smart Metering privacy.
The works [5, 6, 11, 12, 14, 15, 20] investigate in the broad

area of consumption trace analysis and behavior analysis
form energy consumption. The authors of [14], for instance,
investigate the effectiveness of their developed behavior de-
duction using a NALM approach. Over the course of two
weeks they conducted an experiment that collected electri-
cal data and video surveillance of the inhabitants. Their
developed system inferred behavior events and load events
from the electrical data and evaluated the performance of
behavior analysis with control data extracted from the video
surveillance. Finally, they construct a sample disclosure
metric that categorizes their behavior deductions into cat-
egories like presence, sleep schedule and others and rates
the disclosure in those categories according to the ability
of their behavior-extraction system. [11] on the other hand
focuses on detecting and characterizing different appliances
according to load signatures.

Mitigation by data prevention.
The following approaches are good at ensuring consumer

privacy because no household specific consumption traces
are stored at the supplier’s and therefore the LA/LP attacks
are not feasible:

In [1] a model for measuring privacy in Smart Metering
is developed and subsequently two different solutions to en-
sure privacy are presented: A Trusted Third Party-based
approach, where individual consumption profiles are aggre-
gated at the third party and only sums are communicated
to the supplier. The other approach attempts to mask con-
sumption profiles by adding randomness to the actual profile
with an expectation of the random distribution of zero.

In [18] another twofold approach is presented: The first
solution employs a sophisticated Trusted Platform Module
(TPM) in the Smart Meter to obtain signed tariff data from
the supplier and calculate a trustworthy bill. The second
solution makes use of the electrical grid infrastructure as
a third party to anonymize up-to-date consumption values
sent out constantly by Smart Meters.

In [13] the authors first perform an informal threat anal-
ysis of Smart Metering and provide a sketch for an attested
Smart Meter architecture. Using virtualization, mandatory
network access control and trusted computing techniques
this architecture enables multiple applications to use the
Smart Meter hardware and to work in a privacy-preserving
and integer manner. The article identifies applications for
billing the consumer very closely to the data origin (in the
household) and applications that provide the consumer with
a consumer portal. They achieve privacy-preserving Smart
Metering billing by remote attestation of the billing software
in the TPM of the Smart Meter.

A cryptographic approach to Smart Meter privacy has
been presented in [9]. A privacy component homomorphi-
cally calculates the price locally in the household and only



reports the final price and cryptographic proofs to the sup-
plier. With the help of those proofs the correct calculation
with the correct tariff can be verified. In contrast to [21]
this work focuses on how it can be built into existing Smart
Meter reporting protocols.

Another cryptographic approach very similar to [9] is de-
scribed in [21]. It focuses on realizing a variety of different
tariff types with a cryptographic solution. Both approaches
have been jointly evaluated in Section 6.3 with respect to
their effectiveness to the developed attacks.

Mitigation by anonymization.
In [3] the authors propose a system to separate the data

flow from the Smart Meter into two flows: One high- and
one low-frequency data flow. The low frequency flow is at-
tributed with the household’s identity and can therefore be
used for billing. The high-frequency data flow, that tells
more about the habits of household inhabitants, is trans-
mitted anonymously by the Smart Meter. An escrow ser-
vice, potentially provided by the manufacturer of the Smart
Meter, authenticates the anonymous high frequency flow to-
wards the utility so that trust can be placed in its authen-
ticity. The escrow service can disclose the identity of the
high-frequency data flow in case of abuse.

This approach anonymizes the high-frequency data flow
but cannot mitigate our attack vectors. Our assumptions
are that attackers have access to anonymous (from their
point of view) consumption traces but still manage to create
linkability using correlation with secondary data sources.

Mitigation by hiding.
In [10] the authors propose to use a ’Load Signature Mod-

erator’ (LSM) and batteries to mask consumption events
that represent ’privacy threats’. The LSM either detects
or is notified by the appliances of approaching consump-
tion events and could apply different algorithms like hi-
ding, smoothing or obfuscation to hide those events from
the Smart Meter. The batteries serve as energy buffer and
enable the smoothing of actual loads. Then the authors
measure the achieved privacy protection using three met-
rics: relative entropy cluster classification based similarity
and regression analysis with different battery capacities and
their best-effort moderation algorithm.

Our attack vectors would indeed be mitigated by the pro-
posed approach. However, as the authors mention the pro-
posed approach could conflict with cost-saving consumption
strategies. On another note, it is questionable whether con-
sumer see that their privacy value offsets the costs of such a
system. If combined with cost-saving strategies, this might
however be a desirable solution for consumers.

8. CONCLUSIONS
We have presented two attack vectors on the unlinkability

of pseudonymized Smart Metering consumption traces. The
first attack linking by behavior anomaly attempts to link a
household identity to a pseudonymous consumption trace by
anomaly correlation. The second attack linking by behavior
pattern attempts to trace the origin of a consumption trace
across different pseudonyms (due to re-pseudonymization or
due to storage in different databases) by using patterns in
their electricity consumption. To demonstrate the impact
of the two attack vectors, we have presented a data anal-

ysis framework which allows us to conduct the attacks in
practice and which we apply to perform experiments on real
consumption traces.

Our experiments indicate that the task of finding relevant
anomalies in consumption traces for the linking by behav-
ior anomaly is feasible and allows deduction of household
behavior. Regarding the linking by behavior pattern attack
our experiments suggest that tracking the consumption trace
across different pseudonyms is also feasible and can be exe-
cuted quite accurately. Finally, we analyzed different miti-
gation techniques like lower resolution, frequent re-pseudo-
nymization or data prevention with respect to their ability
to thwart our attacks: A lower Smart Metering resolution
has a mixed/good effect on the LA/LP attacks respectively,
frequent re-pseudonymization requires very frequent (more
often than 20 days) changes of pseudonyms to have notice-
able (less than 80% accuracy) effects on linkability. Data
prevention, by privacy-preserving cryptographic approaches
that calculate the price in the household, has the best effect
on both attacks and is also the most flexible with respect to
high resolution time-of-use and real-time tariffs.

We have shown that alleged unlinkability introduced by
pseudonymity of consumption traces is not sufficient for con-
sumer privacy. Using the right secondary data sources at-
tackers can link pseudonymized consumption traces back to
consumers or track consumers across different databases of
consumption traces. To prevent a failure of Smart Metering
due to consumer distrust solutions must be found, that al-
low legitimate calculations on consumption traces without
endangering consumer privacy.

9. FUTURE WORK
As we lack control data for our linking by behavior anomaly

attack we could not fully evaluate its practical impact. Fu-
ture work in this area is thus the investigation of linkability
with adequate secondary data sources for willing consumers.

Another interesting question is whether persons can be
tracked across different residencies. New apartments/houses
induce some change in consumption patterns but to some
extend personal habits and preferences might still be en-
coded in the consumption trace. A research question could
be whether there is a component in the energy consump-
tion pattern that remains the same, i.e. that identifies the
inhabitants even across residencies?
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