
SessionShield: Lightweight Protection against
Session Hijacking

Nick Nikiforakis1, Wannes Meert1, Yves Younan1, Martin Johns2, and Wouter
Joosen1

1 IBBT-DistriNet
Katholieke Universiteit Leuven

Celestijnenlaan 200A B3001
Leuven, Belgium

{nick.nikiforakis,wannes.meert,yves.younan,wouter.joosen}@cs.kuleuven.be
2 SAP Research - CEC Karlsruhe

martin.johns@sap.com

Abstract. The class of Cross-site Scripting (XSS) vulnerabilities is the
most prevalent security problem in the field of Web applications. One of
the main attack vectors used in connection with XSS is session hijacking
via session identifier theft. While session hijacking is a client-side attack,
the actual vulnerability resides on the server-side and, thus, has to be
handled by the website’s operator. In consequence, if the operator fails
to address XSS, the application’s users are defenseless against session
hijacking attacks.
In this paper we present SessionShield, a lightweight client-side
protection mechanism against session hijacking that allows users to
protect themselves even if a vulnerable website’s operator neglects
to mitigate existing XSS problems. SessionShield is based on the
observation that session identifier values are not used by legitimate client-
side scripts and, thus, need not to be available to the scripting languages
running in the browser. Our system requires no training period and
imposes negligible overhead to the browser, therefore, making it ideal
for desktop and mobile systems.

1 Introduction

Over the past decade, users have witnessed a functional expansion of the Web,
where many applications that used to run on the desktop are now accessible
through the browser. With this expansion, websites evolved from simple static
HTML pages to dynamic Web applications, i.e. content-rich resources accessible
through the Web. In this modern Web, JavaScript has proven its usefulness by
providing server offloading, asynchronous requests and responses and in general
improving the overall user experience of websites. Unfortunately, the de facto
support of browsers for JavaScript opened up the user to a new range of attacks,
of which the most common is Cross-site scripting (XSS3).
3 Cross-site scripting is commonly abbreviated as XSS to distinguish it from the

acronym of Cascading Style Sheets (CSS)

2 N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen

In XSS attacks, an attacker convinces a user’s browser to execute malicious
JavaScript code on his behalf by injecting this code in the body of a vulnerable
webpage. Due to the fact that the attacker can only execute JavaScript
code, as opposed to machine code, the attack was initially considered of
limited importance. Numerous incidents though, such as the Sammy worm that
propagated through an XSS vulnerability on the social network MySpace [34] and
the XSS vulnerabilities of many high-impact websites (e.g., Twitter, Facebook
and Yahoo [40]) have raised the awareness of the security community. More
recently, Apache released information about an incident on their servers where
attackers took advantage of an XSS vulnerability and by constant privilege
escalation managed to acquire administrator access to a number of servers [1].

Today, the Open Web Application Security Project (OWASP) ranks XSS
attacks as the second most important Web application security risk [28]. The
Web Hacking Incident Database from the Web Application Security Consortium
states that 13.87% of all attacks against Web applications are XSS attacks [4].
These reports, coupled with more than 300,000 recorded vulnerable websites in
the XSSed archive [40], show that this problem is far from solved.

In this paper, we present SessionShield, a lightweight countermeasure against
session hijacking. Session hijacking occurs when an attacker steals the session
information from a legitimate user for a specific website and uses it to circumvent
authentication to that website. Session hijacking is by far the most popular type
of XSS attack since every website that uses session identifiers is potentially
vulnerable to it. Our system is based on the observation that session identifiers
are strings of data that are intelligible to the Web application that issued them
but not to the Web client who received them. SessionShield is a proxy outside of
the browser that inspects all outgoing requests and incoming responses. Using a
variety of methods, it detects session identifiers in the incoming HTTP headers,
strips them out and stores their values in its own database. In every outgoing
request, SessionShield checks the domain of the request and adds back the values
that were previously stripped. In case of a session hijacking attack, the browser
will still execute the session hijacking code, but the session information will not
be available since the browser never received it. Our system is transparent to
both the Web client and the Web server, it operates solely on the client-side and
it doesn’t rely on the Web server or trusted third parties. SessionShield imposes
negligible overhead and doesn’t require training or user interaction making it
ideal for both desktop and mobile systems.

The rest of this paper is structured as follows: In Section 2, we describe what
sessions are and how XSS attacks are conducted followed by a detailed survey
concerning a well-known protection mechanism, namely HTTP-Only cookies. In
Section 3, we present the architecture and details of SessionShield. We evaluate
our system in Section 4 and provide implementation details in Section 5. We
discuss related work in Section 6 and finally conclude in Section 7.

SessionShield: Lightweight Protection against Session Hijacking 3

2 Background

2.1 Session Identifiers

The workhorse protocol of the World Wide Web, the HyperText Transfer
Protocol (HTTP) and its secure counterpart (HTTPS) are by design stateless.
That means that a Web application cannot track a client between multiple
requests unless it adds a separate tracking mechanism on top of the HTTP(S)
protocol. The most commonly used tracking mechanism are sessions identifiers. A
session identifier (SID) is a unique string of random data (typically consisting of
numbers and characters) that is generated by a Web application and propagated
to the client, usually through the means of a cookie. After the propagation of
the session, every request initiated by the client will contain, among others,
the session identifier that the application entrusted him with. Using session
identifiers, the Web application is able to identify individual users, distinguish
simultaneously submitted requests and track the users in time. Sessions are
used in e-banking, web-mail and virtually every non-static website that needs
to enforce access-control on its users. Sessions are an indispensable element of
the modern World Wide Web and thus session management support exists in all
modern Web languages (e.g., PHP, ASP and JSP).

Session identifiers are a prime attack target since a successful capture-
and-replay of such an identifier by an attacker provides him with instant
authentication to the vulnerable Web application. Depending on the access
privileges of the user whose id was stolen, an attacker can login as a normal
or as a privileged user on the website in question and access all sorts of private
data ranging from emails and passwords to home addresses and even credit card
numbers. The most common way of stealing session identifiers is through Cross-
site Scripting attacks which are explained in the following section.

2.2 Cross-Site Scripting attacks

Cross-site scripting (XSS) attacks belong to a broader range of attacks,
collectively known as code injection attacks. In code injection attacks, the
attacker inputs data that is later on perceived as code and executed by the
running application. In XSS attacks, the attacker convinces the victim’s browser
to execute JavaScript code on his behalf thus giving him access to sensitive
information stored in the browser. Malicious JavaScript running in the victim’s
browser can access, among others, the contents of the cookie for the running
domain. Since session identifiers are most commonly propagated through cookies,
the injected JavaScript can read them and transfer them to an attacker-
controlled server which will record them. The attacker can then replay these
sessions to the vulnerable website effectively authenticating himself as the victim.

XSS vulnerabilities can be categorized as reflected or stored. A reflected
XSS vulnerability results from directly including parts of the HTTP request
into the corresponding HTTP response. Common examples for reflected XSS

4 N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen

issues include search forms that blindly repeat the search term on the results-
page or custom 404 error pages. On the other hand, a stored XSS vulnerability
occurs whenever the application permanently stores untrusted data which was
not sufficiently sanitized. If such data is utilized to generate an HTTP response,
all potentially injected markup is included in the resulting HTML causing the
XSS issue. Stored XSS was found in the past for instance in guestbooks, forums,
or Web mail applications.

Code listing 1 shows part of the code of a search page, written in PHP, that
is vulnerable to a reflected XSS attack. The purpose of this page is to read
one or more keywords from the user, search the database for the keyword(s)
and show the results to the user. Before the actual results, the page prints out
the keyword(s) that the user searched for. The programmer however has not
provisioned against XSS attacks, and thus whatever is presented as a query, will
be “reflected” back in the main page, including HTML and JavaScript code. An
attacker can hijack the victim’s session simply by sending him the following link:

http :// vulnerable.com/search.php?q=</u><script >

document.write(‘<img src="http :// hacker.com/

session_hijack.php?ck=’ + document.cookie +‘">’);

</script >

When the user clicks on the above link, his browser will initiate a GET request
to vulnerable.com. The GET parameter q will be added to the resulting page
that the server sends back to the user’s browser. The victim’s browser will start
rendering the page and once it reaches the “Search results for:” part, it will
create an image URI which contains the values stored in the user’s cookie and
ask for that image from the attacker-controlled server. The attacker’s script will
record the cookie values and enable the attacker to masquerade as the victim at
the vulnerable.com.

Code Listing 1 Code snippet vulnerable to an XSS attack

<?php

session_start ();

...

$search_query = $_GET[‘q’];

print "Search results for: <u> $search_query </u>";

...

?>

2.3 HTTP-Only and Sessions

Developers realized from early on that it is trivial to hijack Web sessions in
the presence of an XSS vulnerability. In 2002, Microsoft developers introduced

SessionShield: Lightweight Protection against Session Hijacking 5

the notion of HTTP-Only cookies and added support for them in the release
of Internet Explorer 6, SP1 [22]. HTTP-Only is a flag that is sent by the Web
application to the client, along with a cookie that contains sensitive information,
e.g., a session identifier. It instructs the user’s browser to keep the values of that
cookie away from any scripting languages running in the browser. Thus, if a
cookie is denoted as HTTP-Only and JavaScript tries to access it, the result
will be an empty string. We tested the latest versions of the five most common
Web browsers (Internet Explorer, Firefox, Chrome, Safari and Opera) and we
observed that if the Web application emmits the HTTP-Only flag the cookie is,
correctly, no longer accessible through JavaScript.

In an attempt to discover whether the HTTP-Only mechanism is actually
used, we crawled the Alexa-ranked top one million websites [35] and recorded
whether cookies that contained the keyword “sess” where marked as HTTP-Only.
We chose “sess” because it is a common substring present in the session names of
most major Web languages/frameworks (see Section 3.2, Table 2) and because
of the high probability that customely named sessions will still contain that
specific substring. We also provisioned for session names generated by the
ASP/ASP.NET framework that don’t contain the “sess” string. The results of
our crawling are summarized in Table 1. Out of 1 million websites, 418,729
websites use cookies in their main page and out of these, 272,335 cookies contain
session information4. We were surprised to find out that only a 22.3% of all
websites containing sessions protected their cookies from session stealing using
the HTTP-Only method. Further investigation shows that while 1 in 2 ASP
websites that use sessions utilize HTTP-Only, only 1 in 100 PHP/JSP websites
does the same.

These results clearly show that HTTP-Only hasn’t received widespread
adoption. Zhou et al. [42] recently made a similar but more limited study (top
500 websites, instead of top 1 million) with similar findings. In their paper
they acknowledge the usefullness of the HTTP-Only mechanism and they discuss
possible reasons for its limited deployment.

Session Framework Total With HTTP-Only Without HTTP-Only

PHP 135,117 (53.2%) 1,736 (1.3%) 133,381 (98.7%)

ASP/ASP.NET 60,218 (23.5%) 25,739 (42.7%) 34,479 (57.3%)

JSP 12,911 (5.1%) 113 (0.9%) 12,798 (99.1%)

Other 64,089 (18.2%) 33,071 (51.6%) 31,018 (48.4%)

Total 272,335 (100%) 60,659 (22.3%) 211,676 (77.8%)

Table 1: Statistics on the usage of HTTP-Only on websites using session identifiers,
sorted according to their generating Web framework

4 Cookies that contained the HTTP-Only flag but were not identified by our heurestic
are added to the “Other/With HTTP-Only” column.

6 N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen

3 SessionShield Design

SessionShield is based on the idea that session identifiers are data that no
legitimate client-side script will use and thus should not be available to the
scripting languages running in the browser. Our system shares this idea with
the HTTP-Only mechanism but, unlike HTTP-Only, it can be applied selectively
to a subset of cookie values and, more important, it doesn’t need support from
Web applications. This means, that SessionShield will protect the user from
session hijacking regardless of the security provisioning of Web operators.

The idea itself is founded on the observation that session identifiers are strings
composed by random data and are unique for each visiting client. Furthermore,
a user receives a different session identifier every time that he logs out from a
website and logs back in. These properties attest that there can be no legitimate
calculations done by the client-side scripts using as input the constantly-changing
random session identifiers. The reason that these values are currently accessible
to client-side scripts is because Web languages and frameworks mainly use the
cookie mechanism as a means of transport for the session identifiers. The cookie
is by default added to every client request by the browser which aleviates
the Web programmers from having to create their own transfer mechanism
for session identifiers. JavaScript can, by default, access cookies (using the
document.cookie method) since they may contain values that the client-side
scripts legitimately need, e.g., language selection, values for boolean variables
and timestamps.

3.1 Core Functionality

Our system acts as a personal proxy, located on the same host as the browser(s)
that it protects. In order for a website or a Web application to set a cookie to a
client, it sends a Set-Cookie header in its HTTP response headers, followed by
the values that it wishes to set. SessionShield inspects incoming data in search for
this header. When the header is present, our system analyses the values of it and
attempts to discover whether session identifiers are present. If a session identifier
is found, it is stripped out from the headers and stored in SessionShield’s internal
database. On a later client request, SessionShield queries its internal database
using the domain of the request as the key and adds to the outgoing request the
values that it had previously stripped.

A malicious session hijacking script, whether reflected or stored, will try to
access the cookie and transmit its value to a Web server under the attacker’s
control. When SessionShield is used, cookies inside the browser no longer contain
session identifiers and since the attacker’s request domain is different from the
domain of the vulnerable Web application, the session identifier will not be added
to the outgoing request, effectively stopping the session hijacking attack.

In order for SessionShield to protect users from session hijacking it must
successfully identify session identifiers in the cookie headers. Our system uses
two identification mechanisms based on: a) common naming conventions of Web

SessionShield: Lightweight Protection against Session Hijacking 7

frameworks and of custom session identifiers and b) statistical characteristics of
session identifiers.

3.2 Naming Conventions of Session Identifiers

Common Web Frameworks Due to the popularity of Web sessions, all
modern Web languages and frameworks have support for generating and
handling session identifiers. Programmers are actually adviced not to use custom
session identifiers since their implementation will most likely be less secure
from the one provided by their Web framework of choice. When a programmer
requests a session identifier, e.g., with session start() in PHP, the underlying
framework generates a random unique string and automatically emmits a
Set-Cookie header containing the generated string in a name=value pair, where
name is a standard name signifying the framework used and value is the random
string itself. Table 2 shows the default names of session identifiers according to
the framework used5. These naming conventions are used by SessionShield to
identify session identifiers in incoming data and strip them out of the headers.

Common Custom Naming From the results of our experiment in Section 2.3,
we observed that “sess” is a common keyword among custom session naming
and thus it is included as an extra detection method of our system. In order to
avoid false-positives we added the extra measure of checking the length and the
contents of the value of such a pair. More specifically, SessionShield identifies
as session identifiers pairs that contain the word “sess” in their name and their
value is more than 10 characters long containing both letters and numbers.
These characteristics are common among the generated sessions of all popular
frameworks so as to increase the value space of the identifiers and make it
practically impossible for an attacker to bruteforce a valid session identifier.

Session Framework Name of Session variable

PHP phpsessid

ASP/ASP.NET asp.net sessionid
aspsessionid*
.aspxauth*
.aspxanonymous*

JSP jspsessionid
jsessionid

Table 2: Default session naming for the most common Web frameworks

5 On some versions of the ASP/ASP.NET framework the actual name contains random
characters, which are signified by the wildcard symbol in the table.

8 N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen

3.3 Statistical Characteristics of session identifiers

Despite the coverage offered by the previous mechanism, it is beyond doubt
that there can be sessions that do not follow standard naming conventions and
thus would not be detected by it. In this part we focus on the fact that session
identifiers are long strings of symbols generated in some random way. These two
key characteristics, length and randomness, can be used to predict if a string,
that is present in a cookie, is a session identifier or not. This criterion, in fact,
is similar to predicting the strength of a password.

Three methods are used to predict the probability that a string is a session
identifier (or equivalently the strength of a password):

1. Information entropy: The strength of a password can be measured
by the information entropy it represents [6]. If each symbol is produced
independently, the entropy is H = L · log2N , with N the number of possible
symbols and L the length of the string. The resulting value, H, gives the
entropy and represents the number of bits necessary to represent the string.
The higher the number of necessary bits, the better the strength of the
password in the string. For example, a pin-code consisting out of four digits
has an entropy of 3.32 bits per symbol and a total entropy of 13.28.

2. Dictionary check: The strength of a password reduces if it is a known
word. Similarly, cookies that have known words as values are probably not
session identifiers.

3. χ2: A characteristic of a random sequence is that all symbols are produced
by a generator that picks the next symbol out of a uniform distribution
ignoring previous symbols. A standard test to check if a sequence correlates
with a given distribution is the χ2-test [16], and in this case this test is used
to calculate the correlation with the uniform distribution. The less the string
is correlated with the random distribution the less probable it is that it is a
random sequence of symbols. The uniform distribution used is 1/N , with N
the size of the set of all symbols appearing in the string.

Every one of the three methods returns a probability that the string is a
session identifier. These probabilities are combined by means of a weighted
average to obtain one final probability. SessionShield uses this value and a
threshold to differentiate between session and non-session values (see Section 5
for details).

4 Evaluation

4.1 False Positives and False Negatives

SessionShield can protect users from session hijacking as long as it can
successfully detect session identifiers in the incoming HTTP(S) data. In
order to evaluate the security performance of SessionShield we conducted the
following experiment: we seperated the first 1,000 cookies from our experiment

SessionShield: Lightweight Protection against Session Hijacking 9

in Section 2.3 and we used them as input to the detection mechanism of
SessionShield. SessionShield processed each cookie and classified a subset of the
values as sessions identifiers and the rest as benign data. We manually inspected
both sets of values and we recorded the false positives (values that were wrongly
detected as session identifiers) and the false negatives (values that were not
detected as session identifiers even though they were). SessionShield classified
2,167 values in total (average of 2.16 values/cookie) with 70 false negatives (3%)
and 19 false positives (0,8%).

False negatives were mainly session identifiers that did not comply to our
session identifier criteria, i.e a) they didn’t contain both letters and numbers or b)
they weren’t longer than 10 characters. Session identifiers that do not comply to
these requirements are easily brute-forced even if SessionShield protected them.
With regard to false positives, it is important to point out that in order for a
website to stop operating correctly under SessionShield, its legitimate client-side
scripts must try to use values that SessionShield classified as session identifiers.
Thus the actual percentage of websites that wouldn’t operate correctly and would
need to be white-listed is less than or equal to 0,8%.

4.2 Performance Overhead

No Proxy Python Proxy SessionShield

0

10

20

30

40

50

60

70

80

90

100

59.99 63.03 65.42

Browsing Method

A
ve

ra
g

e
 p

a
g

e
-d

o
w

n
lo

a
d

 ti
m

e
 (

m
s)

Fig. 1: Average download time of the top 1,000 websites when accessed locally without
a proxy, with a simple forwarding Python-proxy and with SessionShield

In an effort to quantify how much would SessionShield change the Web
experience of users, we decided to measure the difference in page-download time
when a page is downloaded: a) directly from the Internet; b) through a simple
forwarding proxy [9] and c) through SessionShield. Using wget, we downloaded
the top 1,000 Internet websites [35] and measured the time for each.

In order to avoid network inconsistencies we downloaded the websites locally
together with the HTTP headers sent by the actual Web servers. We used a fake

10 N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen

DNS server that always resolved all domains to the “loopback” IP address and
a fake Web server which read the previously-downloaded pages from disk and
replayed each page along with its original headers. This allowed us to measure
the time overhead of SessionShield without changing its detection technique,
which relies on the cookie-related HTTP headers. It is important to point out
that SessionShield doesn’t add or remove objects in the HTML/JavaScript code
of each page thus the page-rendering time isn’t affected by its operation. Each
experiment was repeated five times and the average page-download time for
each method is presented in Fig. 1. SessionShield’s average time overhead over a
simple Python proxy is approximately 2.5 milliseconds and over a non-proxied
environment is 5.4 milliseconds. Contrastingly, popular Web benchmarks show
that even the fastest websites have an average page-download time of 0.5 seconds
when downloaded directly from the Internet [38].

Since our overhead is two orders of magnitute less than the fastest page-
download times we believe that SessionShield can be used by desktop and mobile
systems without perceivable performance costs.

5 Implementation

We decided to prototype SessionShield using Python. We used an already
implemented Python proxy, TinyHTTPProxy [9], and added the session
detection mechanisms that were described in Section 3. The advantage of
implementing SessionShield as a stand-alone personal proxy instead of a browser-
plugin relies on the fact that cookies residing in the browser can still be attacked,
e.g. by a malicious add-on [18]. When sensitive data are held outside of the
browser, in the data structures of the proxy, a malicious add-on will not be able
to access them. On the other hand, a browser plugin can transparently support
HTTPS and provides a more user-friendly install and update procedure.

The threshold value of SessionShield, mentioned in Section 3.3, was obtained
by using the known session identifiers from our HTTP-Only experiment in
Section 2.3 as input to our statistical algorithm and observing the distribution
of the reported probabilities.

6 Related Work

Client-side approaches for mitigating XSS attacks: Noxes [15] is a defensive
approach closely related to ours – A client-side Web proxy specifically designed
to prevent session identifier (SID) theft. Unlike our approach, Noxes does
not prevent the injected JavaScript to access the SID information. Instead,
Noxes aims to deprive the adversary from the capability to leak the SID
value outside of the browser. The proposed technique relies on the general
assumption that dynamically assembled requests to external domains are
potentially untrustworthy as they could carry stolen SID values. In consequence,
such requests are blocked by the proxy. Besides the fact that this implemented
policy is incompatible with several techniques from the Web 2.0 world, e.g.,

SessionShield: Lightweight Protection against Session Hijacking 11

Web widgets, the protection provided by Noxes is incomplete: For example,
the authors consider static links to external domains to be safe, thus, allowing
the attacker to create a subsequent XSS attack which, instead of script-tags,
injects an HTML-tag which statically references a URL to the attackers domain
including the SID value.

Vogt et al. [36] approach the problem by using a combination of static analysis
and dynamic data tainting within the browser to track all sensitive information,
e.g., SID values, during JavaScript execution. All outgoing requests that are
recognised to contain such data are blocked. However, due to the highly dynamic
and heterogenous rendering process of webpages, numerous potential hidden
channels exist which could lead to undetected information leaks. In consequence,
[32] exemplified how to circumvent the proposed technique. In comparison, our
approach is immune to threats through hidden channels as the SID never enters
the browser in the first place.

Furthermore, browser-based protection measures have been designed that
disarm reflected XSS attacks through comparing HTTP requests and responses.
If a potential attack is detected, the suspicious code is neutralized on rendering-
time. Examples for this approach include NoScript for Firefox [20], Internet
Explorer’s XSS Filter [31], and XSSAuditor for Chrome [3]. Such techniques
are necessarily limited: They are only effective in the presence of a direct,
character-level match between the HTTP request and its corresponding HTTP
response. All non-trivial XSS vulnerabilities are out of scope. In addition, it is
not without risk to alter the HTTP response in such ways: For instance, Nava
& Lindsay [25] have demonstrated, that the IE XSS Filter could cause XSS
conditions in otherwise secure websites.

Finally, to confine potentially malicious scripts, it has been proposed to
whitelist trusted scripts and/or to declare untrusted regions of the DOM which
disallow script execution [10, 23, 5, 21]. All of these techniques require profound
changes in the browser’s internals as well as the existence of server-side policy
information.

Security enhancing client-side proxies: Besides Noxes (see above) further client-
side proxies exist, that were specifically designed to address Web application
vulnerabilities:

RequestRodeo [12] mitigates Cross-site Request Forgery attacks through
selectively removing authentication credentials from outgoing HTTP requests.
As discussed in this paper, the majority of all Web applications utilize the SID
as the de facto authentication credential. In consequence, RequestRodeo (and its
further refinements, such as [33]) could benefit from our SID detection algorithm
(see Section 3) in respect to false positive reduction.

HProxy [27] is a client-side proxy which protects users from SSL stripping
attacks and from malicious JavaScript code that a Man-In-The-Middle (MITM)
attacker could have added in a page to steal Web credentials. In order to
differentiate between original and “added” JavaScript, HProxy takes advantage
of the user’s browsing habits to generate a template of each script, recording
the static and the dynamic parts of it. If, at a later time, a script is detected

12 N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen

which doesn’t adhere to its original template, HProxy marks it as an attack and
doesn’t forward it to the browser.

Server-side approaches: The majority of existing XSS prevention and mitigation
techniques take effect on the Web application’s server-side. We only give a brief
overview on such related work, as this paper’s contributions specifically address
client-side protection:

Several approaches, e.g., [29, 26, 8, 41], employ dynamic taint tracking
of untrusted data on run-time to identify injection attacks, such as XSS.
Furthermore, it has been shown that static analysis of the application’s source
code is a capable tool to identify XSS issues (see for instance [17, 39, 14, 37, 7]).
Moreover, frameworks which discard the insecure practice of using the string
type for syntax assembly are immune against injection attacks through providing
suitable means for data/code separation [30, 11]. Jovanovic et al. [13] use a
server-side proxy which rewrites HTTP(S) requests and responses in order to
detect and prevent Cross-site Request Forgery. Finally, cooperative approaches
spanning server and browser have been described in [2, 19, 24].

7 Conclusion

Session hijacking is the most common Cross-site Scripting attack. In session
hijacking, an attacker steals session-containing cookies from users and utilizes the
session values to impersonate the users on vulnerable Web applications. In this
paper we presented SessionShield, a lightweight client-side protection mechanism
against session hijacking. Our system, is based on the idea that session identifiers
are not used by legitimate client-side scripts and thus shoudn’t be available to the
scripting engines running in the browser. SessionShield detects session identifiers
in incoming HTTP traffic and isolates them from the browser and thus from all
the scripting engines running in it. Our evaluation of SessionShield showed that
it imposes negligible overhead to a user’s system while detecting and protecting
almost all the session identifiers in real HTTP traffic, allowing its widespread
adoption in both desktop and mobile systems.

8 Acknowledgments

This research is partially funded by the Interuniversity Attraction Poles
Programme Belgian State, Belgian Science Policy, IBBT, the Research Fund
K.U.Leuven and the EU-funded FP7-project WebSand.

References

1. Apache.org. https://blogs.apache.org/infra/entry/apache_org_04_09_2010.
2. Elias Athanasopoulos, Vasilis Pappas, Antonis Krithinakis, Spyros Ligouras,

Evangelos P. Markatos, and Thomas Karagiannis. xjs: Practical xss prevention
for web application development. In Proceedings of the 1st USENIX Conference
on Web Application Development (WebApps’10), 2010.

SessionShield: Lightweight Protection against Session Hijacking 13

3. Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered
harmful in client-side XSS filters. In Proceedings of the 19th international
conference on World wide web (WWW ’10), New York, NY, USA, 2010. ACM.

4. Web Application Security Consortium. Web Hacking Incident Database.
5. Ulfar Erlingsson, Benjamin Livshits, and Yinglian Xie. End-to-end Web

Application Security. In Proceedings of the 11th Workshop on Hot Topics in
Operating Systems (HotOS’07), May 2007.

6. Dinei Florencio and Cormac Herley. A large-scale study of web password habits.
In Proceedings of the 16th international conference on World Wide Web (WWW
’07), New York, NY, USA, 2007. ACM.

7. Emmanuel Geay, Marco Pistoia, Takaaki Tateishi, Barbara Ryder, and Julian
Dolby. Modular String-Sensitive Permission Analysis with Demand-Driven
Precision. In Proceedings of the 31st International Conference on Software
Engineering (ICSE 2009), 2009.

8. William G.J. Halfond, Alessandro Orso, and Panagiotis Manolios. Using Positive
Tainting and Syntax-Aware Evaluation to Counter SQL Injection Attacks.
In Proceedings of the 14th ACM Symposium on the Foundations of Software
Engineering (FSE), 2006.

9. Suzuki Hisao. Tiny HTTP Proxy in Python.
10. Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating Script Injection Attacks

with Browser-Enforced Embedded Policies. In Proceedings of the 16th International
World Wide Web Conference (WWW ’07), May 2007.

11. Martin Johns, Christian Beyerlein, Rosemaria Giesecke, and Joachim Posegga.
Secure Code Generation for Web Applications. In Proceedings of the 2nd
International Symposium on Engineering Secure Software and Systems (ESSoS
’10). Springer, February 2010.

12. Martin Johns and Justus Winter. RequestRodeo: Client Side Protection against
Session Riding. In Proceedings of the OWASP Europe 2006 Conference, 2006.

13. Nenad Jovanovic, Engin Kirda, and Christopher Kruegel. Preventing cross
site request forgery attacks. In Proceedings of IEEE International Conference
on Security and Privacy for Emerging Areas in Communication Networks
(Securecomm), 2006.

14. Nenad Jovanovic, Christopher Kruegel, and Engin Kirda. Pixy: A Static Analysis
Tool for Detecting Web Application Vulnerabilities. In IEEE Symposium on
Security and Privacy, May 2006.

15. Engin Kirda, Christopher Kruegel, Giovanni Vigna, and Nenad Jovanovic. Noxes:
A Client-Side Solution for Mitigating Cross Site Scripting Attacks. In Security
Track of the 21st ACM Symposium on Applied Computing (SAC 2006), April 2006.

16. Donald E. Knuth. The Art of Computer Programming, Volume 2. Addison-Wesley
Publishing Company, 1971.

17. Benjamin Livshits and Monica S. Lam. Finding Security Vulnerabilities in Java
Applications Using Static Analysis. In Proceedings of the 14th USENIX Security
Symposium, August 2005.

18. Mike Ter Louw, Jin Soon Lim, and V. N. Venkatakrishnan. Extensible Web
Browser Security. In 4th International Conference on Detection of Intrusions,
Malware, and Vulnerability Assesment (DIMVA), 2007.

19. Mike Ter Louw and V.N. Venkatakrishnan. BluePrint: Robust Prevention of Cross-
site Scripting Attacks for Existing Browsers. In IEEE Symposium on Security and
Privacy (Oakland’09), May 2009.

20. Giorgio Maone. NoScript Firefox Extension, 2006.

14 N. Nikiforakis, W. Meert, Y. Younan, M. Johns and W. Joosen

21. Leo A. Meyerovich and Benjamin Livshits. Conscript: Specifying and enforcing
fine-grained security policies for javascript in the browser. In Proceedings of 31st
IEEE Symposium on Security and Privacy (SP ’10), 2010.

22. Microsoft. Mitigating Cross-site Scripting With HTTP-only Cookies.
23. Mozilla Foundation. Content Security Policy Specification, 2009.
24. Yacin Nadji, Prateek Saxena, and Dawn Song. Document Structure Integrity: A

Robust Basis for Cross-site Scripting Defense. In Network & Distributed System
Security Symposium (NDSS ’09), 2009.

25. Eduardo Vela Nava and David Lindsay. Our favorite XSS filters/IDS and how to
attack them. Presentation at the BlackHat US conference, 2009.

26. Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and David
Evans. Automatically hardening web applications using precise tainting. In the
20th IFIP International Information Security Conference, May 2005.

27. Nick Nikiforakis, Yves Younan, and Wouter Joosen. HProxy: Client-side detection
of SSL stripping attacks. In Proceedings of the 7th Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA’10), 2010.

28. OWASP Top 10 Web Application Security Risks.
29. Tadeusz Pietraszek and Chris Vanden Berghe. Defending against Injection Attacks

through Context-Sensitive String Evaluation. In Recent Advances in Intrusion
Detection (RAID2005), 2005.

30. William Robertson and Giovanni Vigna. Static Enforcement of Web Application
Integrity Through Strong Typing. In Proceedings of the USENIX Security
Symposium, Montreal, Canada, August 2009.

31. David Ross. IE 8 XSS Filter Architecture/Implementation, August 2008.
32. Alejandro Russo, Andrei Sabelfeld, and Andrey Chudnov. Tracking Information

Flow in Dynamic Tree Structures. In 14th European Symposium on Research in
Computer Security (ESORICS’09), 2009.

33. Philippe De Ryck, Lieven Desmet, Thomas Heyman, Frank Piessens, and Wouter
Joosen. CsFire: Transparent Client-Side Mitigation of Malicious Cross-Domain
Requests. In Proceedings of 2nd International Symposium on Engineering Secure
Software and Systems (ESSoS ’10), 2010.

34. WhiteHat Security. XSS Worms: The impending threat and the best defense.
35. Alexa: The Web information company.
36. Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Christopher Kruegel, Engin

Kirda, and Giovanni Vigna. Cross Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis. In Proceedings of the 14th Annual Network and
Distributed System Security Symposium (NDSS ’07), 2007.

37. Gary Wassermann and Zhendong Su. Static Detection of Cross-Site Scripting
Vulnerabilities. In Proceedings of the 30th International Conference on Software
Engineering, Leipzig, Germany, May 2008. ACM Press New York, NY, USA.

38. Performance Benchmark - Monitor Page Load Time — Webmetrics.
39. Yichen Xie and Alex Aiken. Static Detection of Security Vulnerabilities in Scripting

Languages. In 15th USENIX Security Symposium, 2006.
40. XSSed — Cross Site Scripting (XSS) attacks information and archive.
41. Wei Xu, Sandeep Bhatkar, and R. Sekar. Taint-Enhanced Policy Enforcement: A

Practical Approach to Defeat a Wide Range of Attacks. In 15th USENIX Security
Symposium, August 2006.

42. Yuchen Zhou and David Evans. Why Aren’t HTTP-only Cookies More Widely
Deployed? In Proceedings of 4th Web 2.0 Security and Privacy Workshop (W2SP
’10), 2010.

