@

256

Distinguished Dissertations

it 5/2011

Code-injection Vulnerabilities
in Web Applications — Exemplified

at Cross-site Scripting

Code-injection Verwundbarkeit in Web Anwendungen am Beispiel von Cross-site Scripting

Martin Johns, SAP Research, Karlsruhe

Summary Cross-site Scripting (XSS) is one of the most
prevalent vulnerability types that affect Web applications.
This article provides an overview of a dissertation, which
addresses the problem XSS as a whole: It starts with a system-
atic deduction of causes and consequences of XSS, proceeds
with presenting countermeasures to mitigate potential XSS-
based attacks, and finally provides a type-based methodology
that guarantees the creation of XSS-free applications. »»»
Zusammenfassung Cross-site Scripting (XSS) ist eine der
haufigsten Verwundbarkeitstypen im Bereich der Web An-

wendungen. Die in diesem Artikel vorgestellte Dissertation
behandelt das Problem XSS ganzheitlich: Basierend auf einer
systematischen Erarbeitung der Ursachen und potentiellen Kon-
sequenzen von XSS, wird zundchst eine Methodik vorgestellt,
die das Design von dynamischen GegenmaBnahmen zur An-
griffseingrenzung erlaubt. Weiterhin, um das unterliegende
Problem grundsatzlich anzugehen, wird ein Typ-basierter
Ansatz zur sicheren Programmierung von Web Anwendun-
gen beschrieben, der zuverldssigen Schutz vor XSS Liicken
garantiert.

Keywords D.3.4 [Software: Programming Languages: Processors]; D.2 [Software: Software Engineering]; Security, Code Injection,
Web Application »»» Schlagwérter Web Anwendung, Sicherheit, Angriffsklassifikation, Angriffsabwehr, sichere

Programmierung

1 Introduction

The Web has won. No other plattform for distributed
applications can rival the Web’s ubiquity and flexibility:
Web applications cover all imaginable application types,
e.g., e-commerce shops, ERP systems, online banking,
social networks, office applications, image manipulation
applications, games, or front-ends for hardware appli-
ances, such as DSL modems or internet routers. In the
same pace as the Web application paradigm’s importance

0 The dissertation is entitled “Code Injection Vulnerabilities in Web
Applications — Exemplified at Cross-site Scripting”. The entire text
is available at http://www.opus-bayern.de/uni-passau/volltexte/2011/
2362/. The examiners were Prof. Dr. Joachim Posegga (University
of Passau) and Prof. Dr. Dieter Gollmann (TU Hamburg-Harburg).
The dissertation has been recommended to the GI-Dissertation Award
2009 by the University of Passau.

it — Information Technology 53 (2011) 5/ DOI 10.1524/itit.2011.0651

has risen, the prevalence and severity of Web application
vulnerabilities have increased. One of the most common
vulnerabilities that affect Web applications is Cross-site
Scripting (XSS) [1].

XSS is an attack which enables the adversary to exe-
cute arbitrary JavaScript within the victim’s Web browser
when the vulnerable Web application is accessed. This
JavaScript is executed in the victim’s current execution
context, hence allowing the attacker to conduct actions
that abuse the victim’s current authentication state [2].

2 Understanding XSS and XSS Payloads

A thorough understanding of the underlying mechan-
isms of XSS attacks is indispensable to assess all potential
defensive approaches. Therefore, the first part of the the-
sis explores the technical aspects of the web application

© Oldenbourg Wissenschaftsverlag

“Jap|oy JybuAdos ayy Aq uoissiwiad uapLim yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad unoK 1oy ajaie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoud si ajonle


http://www.opus-bayern.de/uni-passau/volltexte/2011/2362/
http://www.opus-bayern.de/uni-passau/volltexte/2011/2362/

XSS Payload

Script code

-------------------------------------- s e

Execution context

Application

Browser

|~

Computer Intranet Internet

State-full Static Dynamic
Attack-target web browser browser
applications properties properties
Attack-type Confidentiality State
Leaking
Attack-capability application CSRF
state

Figure 1 Classification of XSS Payloads (exemplified).

paradigm, the causes of XSS vulnerabilities, the specific

methods of exploiting such issues, and the malicious

capabilities which an adversary may gain by the exploita-
tion.

For this purpose, we present a comprehensive survey
of documented XSS attacks [9]. Based on this survey, we
deduct a set of general attack techniques, which are the
basic building blocks of any XSS attack, and introduce
a comprehensive and systematic classification of poten-
tial XSS Payloads. Our proposed classification is based
on dividing the potential actions of a given JavaScript
according to a disjunct set of execution-contexts. This
enabled us to group individually reported attacks into
larger classes and to identify the set of existing payload
targets, such as the affected web application, the victim’s
computer, or intranet resources (see Fig. 1).

Based on the results of this thorough examination of
XSS, we can deduce two general directions towards solv-
ing the discussed issues:

e Designing dedicated countermeasures to disarm spe-
cific payload classes.

e Introducing methods towards removing the underly-
ing XSS issues by changing the process of developing
web applications.

The following two parts of the thesis present our ap-
proaches in respect to these two general areas.

3 Mitigating XSS Exploitation

As soon as the attacker is able to execute his JavaScript
in the victim’s browser, his activities are unrestricted in
respect to the attack payloads which have been identified

in the survey. Consequently, steps have to be taken to

mitigate the identified attack classes, even in the existence

of XSS flaws.

As long as the process of web application development
has not reached a state in which XSS problems are only
rarely encountered, this general approach is valid to es-
tablish a second line of defense.

The techniques proposed in the thesis all share the
same underlying methodology: They aim to disarm XSS
Payloads by selectively depriving the adversary of capa-
bilities, which are required to successfully execute the
targeted attack.

This is achieved by transparently modifying the ex-
ecution environment of the web application without
requiring changes in the actual application.

Within the thesis, countermeasure for the three pre-
vailing XSS Payload types have been designed: Session
Hijacking, Cross-site Request Forgery, and Intranet Attacks:
e Session Hijacking [5]: First, we closely examine

the distinct methods of XSS-based Session Hijack-

ing which have been identified in the payload survey.

Based on this analysis, we propose three technical mea-

sures, each tailored to disarm one of these possible

session hijacking attacks. A combination of our three
methods prevents all session hijacking attempts despite
existing XSS problems.

e Cross-site Request Forgery (CSRF) [6]: To mitigate
CSRF Payloads, we utilize a similar methodology as in
the case of Session Hijacking: First, we closely ana-
lyse the underlying mechanisms that enable CSRF
attacks. Then, we introduce changes in the vul-

J1apjoy ybuAdoo ayy Aq uoissiwiad uapLm ypm pamojje Ajuo si asn J1ayjQ "Ajuo asn jeuosiad inok oy ajaipe siy} aynquisip pue £doa Aew no A “me| JybriAdoos uewas Aq pajoajoid si ajonle

257



¢

258

Distinguished Dissertations

nerable authentication tracking mechanisms which
devoid the adversary from successfully launching CSRF
attacks.

e Intranet Attacks [7]: Finally, we address the class of
attacks that target intranet resources. Due to an initial
examination of the attack class, we deduct three po-
tential countermeasures (in addition to the practice of
disabling JavaScript completely). We discuss the ad-
vantages and drawbacks of each method and conduct
a comparison of the four methods. Based on this dis-
cussion, the most promising approach is implemented
and practically evaluated.

For details on the individual countermeasures, please re-

fer to the thesis or the associated publications.

4 Enforcing Secure Code Generation

While mitigation of attacks, as described in the previous
section, is an important pillar of any defense-in-depth
strategy, it is of high importance to address the underly-
ing root cause of XSS: The majority of all XSS issues are
caused by insecure programming. Thus, a careful exam-
ination of the underlying coding practices is necessary to
establish possible fundamental solutions.

On closer examination, it becomes apparent, that
XSS flaws are actually only a subtype of a larger
vulnerability-class: The class of string-based code injec-
tion vulnerabilities. Other members of this class are for
instance SQL Injection, Directory Traversal, or Remote
Command Injection. For this reason, we analyse the root
causes of the more general case:

String-based code injection occurs in situations where
a program dynamically assembles computer language
code for further usage. This code assembly is done using
the string datatype. Code which is created this way, is
subsequently passed to other parsers during run-time to
be immediately interpreted. String-based code injection
occurs because programmers insecurely mix code-syntax
with data-values during this process. In such situations,
the adversary is capable to trick the program into includ-
ing data-values which contain syntactic elements into the
code assembly, hence, altering the semantics of the re-
sulting computer code.

To solve this problem, we propose a strong sepa-
ration between data and code during dynamic syntax
assembly. For this purpose, we propose definitions of
the concepts data and code that are applicable to string-
based code assembly. Then, we analyse the structure of
selected computer languages. This enables us to classify
individual language elements to represent either data- or
code-elements (see Fig. 2).

$sql = '1SELECT |*|FROM|Users||WHERE||Passwd| =|'-]";
T 11 ] ] 1

|code token |
Figure 2 Data/Code separation for string-based code assembly.

| identifier token |

Native code Programming
¢: Language : [i | Language integration :
| R 1
Abstraction Layer
(ﬁ, plication SerVﬁr)
Foreign code <)
\M‘ External Web Web
Interpreters| |Services | | Browser

Figure 3 Abstraction layer.

Based on these results, we successively develop a novel,
language-based method for dynamic code assembly. The
central concept of our approach is to exchange the com-
mon, inherently insecure code assembly practices with
a secure methodology. More precisely, we introduce
a novel datatype, the Foreign Language Encapsulation
Type (FLET) which replaces the string type for code as-
sembly. The FLET enforces a strict separation between
data- and code-elements, hence, rendering programming
mistakes which lead to data/code-confusion impossible.
To substantiate this security claim, we provide a formal
type theoretical proof which is based on the Biba in-
tegrity model [3] and Volpano/Smith’s information flow
formalization [4].

Furthermore, to ensure mandatory usage of the FLET
semantics, we propose the removal of all direct interfaces
to external interpreters. Instead, we introduce an ab-
straction layer mechanism which provides a FLET-based
interface for secure code-communication (see Fig. 3). To
verify the usability of our approach, we show how to
practically implement our concepts for the J2EE applica-
tion server [8].

5 Conclusion

The thesis addresses the problem XSS as a whole: For one,
the root causes and potential malicious consequences of
this vulnerability type are deducted and comprehensively
presented. Furthermore, the thesis shows how to handle
the problem from a defensive point of view, covering both
reactive countermeasures as well as preventive methods
to ensure XSS-free applications through security by con-
struction.

However, the web application paradigm is still evolv-
ing. Both JavaScript and HTML are under active
development. Web browsers recently started to imple-
ment HTMLS5, the next major version of the language.
New language elements and extended capabilities, such
as cross-domain HTTP requests or persistent client-side
storage, may grant the adversary new capabilities. There-
fore, existing and proposed countermeasures have to be
continuously reevaluated whether they still function given
the current state of the technology. Also, the novel capac-
ities may lead to the development of currently unknown
XSS Payloads.

“Jap|oy JybuAdos ayy Aq uoissiwiad uapLim yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad unoK 1oy ajaie siyy aynquisip pue Adoa Aew no, me| JybAdoo uewas Aq pajoajoud si ajonle



Nonetheless, the methodologies discussed in the thesis
remain valid for new attacks: For one, the underlying
approach of our payload classification (segmentation of
execution-contexts and identification of attack targets
through URL schema iteration) is independent from ac-
tual language features and, hence, can be applied to assess
freshly discovered payload types. Furthermore, our gen-
eral methodology to develop payload-specific mitigation
can be utilized to create suiting countermeasures.

Also, the attack surface of XSS attacks is directly related
to the number of existing XSS vulnerabilities in deployed
applications. Thus, a wide adaption of our FLET-based
technique for reliably secure foreign code assembly would
cause a significant reduction of this attack surface.

Consequently, the thesis’ contributions can provide
crucial leverage to address the pressing problem of XSS.

References

[1] St.Christey and R.A. Martin. Vulnerability Type Distributions
in CVE, Version 1.1, May 2007. Online http://cwe.mitre.org/
documents/vuln-trends/index.html.

[2] J.Grossman, R. Hansen, P. Petkov, and A. Rager. Cross Site Scripting
Attacks: XSS Exploits and Defense. Syngress, 2007.

[3] K.J. Biba. Integrity Considerations for Secure Computer Systems.
Report MTR-3153, Mitre Corporation, April 1977.

[4] D.M. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. In: Journal of Computer Security, 4:167-187,
1996.

[5] M. Johns. SessionSafe: Implementing XSS Immune Session Hand-
ling. In: Proc. of the European Symp. on Research in Computer
Security (ESORICS 2006), LNCS 4189, pages 444-460, Springer,
Sep 2006.

[6] M.Johns and J. Winter. RequestRodeo: Client Side Protection
against Session Riding. In: Proc. of the Open WEb Application
Security Project (OWASP) Europe Conf., May 2006. Online: https://
www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf.

[7] M. Johns and J. Winter. Protecting the Intranet Against “JavaScript
Malware” and Related Attacks. In: Proc. of the 4th Int’l Conf. on
Detection of Intrusions and Malware ¢ Vulnerability Assessment
(DIMVA 2007), LNCS 4579, pages 40-59. Springer, July 2007.

[8] M. Johns, Chr. Beyerlein, R. Giesecke, and J. Posegga. Secure Code
Generation for Web Applications. In: Proc. of the 2nd Int’l Symp. on
Engineering Secure Software and Systems (ESSoS ’10), LNCS 5965,
pages 96—113. Springer, Feb 2010.

[9] M. Johns. On JavaScript Malware and Related Threats — Web Page
Based Attacks Revisited. In: Journal in Computer Virology, Springer
Paris, 4(3):161-178, Aug 2008.

Received: June 20, 2011

Dr. Martin Johns is working as Senior Researcher
in the security and trust group within SAP Re-
search, where he is currently leading the Web ap-
plication security team. Before joining SAP, Mar-
tin studied Mathematics and Computer Science at
the Universities of Goettingen, Santa Cruz (CA)
and Hamburg where he received his diploma in
2003. During the 1990ties and the early years of
the new millennium he earned his living as a soft-
ware engineer in German companies (including
Infoseek Germany and TC Trustcenter). 2005
he joined the “Security in Distributed Systems”
group at the University of Hamburg to con-
duct software security research. Subsequently, he
worked as research assistant at the University of
Passau where he finished his Ph.D thesis on Web
security in 2009.

Address: SAP Research, Vincenz-Priessnitz-Stra-
e 1, 76131 Karlsruhe, Germany, Tel.: +49-6227-
752547, Fax: +49-6227-7844618,

e-mail: martin.johns@sap.com

J1apjoy ybuAdoo ayy Aq uoissiwiad uapLm ypm pamojje Ajuo si asn J1ayjQ "Ajuo asn jeuosiad inok oy ajaipe siy} aynquisip pue £doa Aew no A “me| JybriAdoos uewas Aq pajoajoid si ajonle

259


http://cwe.mitre.org/documents/vuln-trends/index.html
http://cwe.mitre.org/documents/vuln-trends/index.html
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf
https://www.owasp.org/images/4/42/RequestRodeo-MartinJohns.pdf

Oldenbourg e
Verlag

Weltweit anerkanntes Standardwerk

David Patterson/ John LeRoy Hennessy

Rechnerorganisation und
Rechnerentwurf

Die Hardware/Software-Schnittstelle Rechnerorganisation
und Rechnerentwurf

Oldenbourg Verlag

2011 | XXIII'| 724 S.| Br.
ca.€ 59,80

ISBN 978-3-486-59190-3

Mit der deutschen Ubersetzung zur dritten Auflage des amerika-
nischen Klassikers »Computer Organization and Design« ist das
Standardwerk zur Rechnerorganisation wieder auf dem neusten
Stand — David A. Patterson und John L. Hennessy gewahren die
gewohnten Einblicke in das Zusammenwirken von Hard- und
Software, Leistungseinschatzungen und zahlreicher Rechnerkonzepte
in einer Tiefe, die zusammen mit klarer Didaktik und einer eher
lockeren Sprache den Erfolg dieses weltweit anerkannten
Standardwerks begriinden.

»Hochaktuell, inspirierend geschrieben, reichhaltig ausgestattet. Das
)) Standardwerk zur Rechnerorganisation, das keine Wiinsche offen Idisst.«
(Prof. Dr.-Ing. Mdirtin, FH Augsburg)

Umfangreiches Zusatzmaterial (zusatzliche Aufgaben samt Losungen,
Werkzeuge mit Tutorien etc.) steht auf der beiliegenden CD zur Verfligung.
Fur Hardwarespezialisten und Softwareentwickler, fiir Theoretiker ebenso
wie fur Praktiker.

Dr. David Patterson ist Professor fiir Computer Science an der University of
California, Berkeley.

John LeRoy Hennessy ist Prasident der Stanford University und Professor fuir
Elektrotechnik und Informatik.

Bestellen Sie in Ihrer Fachbuchhandlung
oder direkt bei uns: Tel: 089/45051-248
Fax: 089/45051-333 | verkauf@oldenbourg.de www.oldenbourg-verlag.de

“Jap|oy JybuAdoa ayy Aq uoissiwiad uapLm yym pamojje Kjuo si asn JayjQ "Ajuo asn jeuosiad inoK 1o} ajoile siyy aynquisip pue Adoa Aew no, me| JyblAdoo uewas Aq pajoajoid si ajane siy|



	1 Introduction 
	2 Understanding XSS and XSS Payloads 
	3 Mitigating XSS Exploitation 
	4 Enforcing Secure Code Generation 
	5 Conclusion 
	References

