
BetterAuth: Web Authentication Revisited∗

Martin Johns
SAP Research

martin.johns@sap.com

Sebastian Lekies
SAP Research

sebastian.lekies@sap.com

Bastian Braun
University of Passau

bb@sec.uni-passau.de
Benjamin Flesch

SAP Research
benjamin.flesch@sap.com

ABSTRACT
This paper presents ”BetterAuth”, an authentication proto-
col for Web applications. Its design is based on the experi-
ences of two decades with the Web. BetterAuth addresses
existing attacks on Web authentication, ranging from net-
work attacks to Cross-site Request Forgery up to Phish-
ing. Furthermore, the protocol can be realized completely in
standard JavaScript. This allows Web applications an early
adoption, even in a situation with limited browser support.

1. INTRODUCTION

1.1 Motivation
The current state of password-based authentication on the

Web is a mess. If used in its default configuration without
additional protection measures, today’s Web authentication
almost appears to be an exercise in demonstrating how an
authentication process should not be realized, showcasing
severe flaws, such as, sending the password in cleartext over
the wire, allowing untrusted parties to create arbitrary au-
thenticated requests, or exposing the authentication creden-
tials to potentially malicious code. While there have been
first stabs in the direction of improving Web-based password
authentication, previous approaches expose at least one of
the following problems:

Web authentication differs from most other authentica-
tion scenarios: It exposes many characteristics that resemble
properties from security protocols. However, it lacks a se-
curity protocol’s rigorous enforcement of message sequence
and integrity, resulting, for instance, in enabling the inser-
tion of messages in authenticated workflows via Cross-site
Request Forgery. Hence, proposals that approach Web au-
thentication purely from a protocol perspective are in danger
of solving only a subset of the problems and missing issues
that result from the versatile and fragile nature of Web in-
teraction.
∗This work was in parts supported by the EU Projects
STREWS (FP7-318097) and WebSand (FP7-256964).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACSAC ’12 Dec. 3-7, 2012, Orlando, Florida USA
Copyright 2012 ACM 978-1-4503-1312-4/12/12 ...$15.00.

Furthermore, the vast majority of proposed improvements
require fundamental changes both in the browser as well
as in the client/server interaction. Hence, without Web
browser support Web applications cannot benefit from the
potential security benefits. This leads to a chicken/egg prob-
lem, as there is no early adopter path for motivated devel-
opers, which in turn could encourage the browser vendors
to natively implement the mechanism.

In consequence, the basic process of password authentica-
tion on the Web has not significantly changed since the day
in which the type="password" attribute was introduced to
HTML.

1.2 Contribution & Organisation
In this paper, we propose BetterAuth, a password-based

authentication scheme that is tailored to fit the Web’s se-
curity requirements and mitigate the flaws of the current
scheme. Our approach has the following properties:

• Unlike related approaches [42, 40, 1, 2, 8, 37], Better-
Auth spans the full authentication lifecycle, consist-
ing of both the initial authentication process and the
ongoing authentication tracking. This allows both a
lightweight, consistent design as well as robust, end-
to-end security guarantees.

• Furthermore, BetterAuth is secure by default. The
developer does not need to enable security properties
explicitly. Instead, all security goals are met due to
inherent properties of the scheme. In consequence, in
its default state, BetterAuth transparently addresses
many weaknesses of the established approach, includ-
ing password sniffing, session credential theft, session
fixation, and cross-site request forgery.

• Finally, even while being suited to be adopted as a
native capability of Web browsers, BetterAuth can be
implemented completely in standard JavaScript. This
enables sites to use the scheme today without having
to wait for the browser vendors to catch up. This po-
tentially enables a viable, transitional phase, in which
only a subset of deployed Web browsers support the
scheme natively.

Organisation: The remainder of the paper is structured
as follows: First, we summarize the current state of Web-
based password authentication, both from the attacker as
well as the developer’s point of view (Sec. 2). Then, we
describe BetterAuth, our improved authentication scheme

(Sec. 3) and report on our experiences in practically imple-
menting the protocol (Sec. 4). An evaluation on security,
performance, and limitations is given in Sec. 5. Before we
conclude in Sec. 7, we discus related work (Sec. 6).

2. THE CURRENT STATE OF WEB-BASED
PASSWORD AUTHENTICATION

The basic process of authenticating against Web appli-
cations has not changed significantly since the early days
of the Web. In the following sections, we show how the
current state of Web authentication came to be. First, we
discuss the bare-bones authentication mechanism that is in
use by the vast majority of all existing Web applications (see
Sec. 2.1). Please note, that in this description, we omit all
potential security measures. We simply show how Web au-
thentication would look like, if implemented as is and how
little security is provided by default. Then, in Sections 2.2
and 2.3, we revisit attacks on Web authentication and the
countermeasures which were introduced to mitigate these
threats.

Also, please note, that for the remainder of this paper,
we restrict the discussion to password-based authentication,
and in this respect, even further to the well established prac-
tice of form-based authentication (see Sec. 2.1), as virtually
all professional Web applications utilize this method.

2.1 The Basics of Web Authentication and Au-
thentication Tracking

The Web authentication process consists of two steps:
First, the initial authentication, in which the user provides
his user ID and password to the application’s server-side.
Then, the authenticated state of the user is maintained over
the series of following HTTP request/response pairs. The
next two sections will explore these two processes.

Initial authentication: In form-based authentication,
the user’s ID and password are communicated using HTML
forms. After the user has entered his credentials, he sub-
mits the form. This causes the Web browser to create an
HTTP request, which carries the values in the form of GET
or POST parameters. In particular, this implies that the
password is sent in clear-text to the server. The server com-
pares the submitted user ID and password with its inter-
nal records. If the password and ID match with one of its
records, the authentication process succeeds and the user’s
session is promoted to an authenticated state.

Authentication tracking: HTTP is a stateless proto-
col. Therefore, there is no protocol-level mechanism to pro-
mote a usage session into an authenticated state, as there
is no inherent session concept. In consequence, application-
layer measures for session and authentication tracking had
to be introduced. The dominant method to maintain an au-
thenticated state over a series of HTTP requests is to use
HTTP cookies for this purpose. An HTTP cookie is a value
that is set by a Web server for the Web server’s domain. The
value is stored by the browser. From this point on, all further
requests that are sent to the server’s domain carry the cookie
value automatically, via the Cookie-header. To implement
authentication tracking, the Web server sends a cookie to
the browser, which signifies the authenticated state of this
client. All further requests which are received by the server
carrying this cookie value are regarded as being authenti-
cated under the user’s identity. Hence, the cookie value is

de facto the user’s authentication credential. Again, as with
the password, this credential is communicated in cleartext.
NB: Instead of setting a new cookie, the server could also
promote an already existing session identifier (SID) cookie
into an authenticated state, thus, making this SID the user’s
credential.

2.2 Fixing Web Authentication: A History of
Band-Aid Solutions and Additive Design

In this section, we briefly revisit documented classes of
Web attacks that target either the initial authentication or
the authentication tracking process. In addition, we discuss
the protective measures that have to be taken by the appli-
cation developer to mitigate the respective threat.

2.2.1 Network-Based Attacks
As already mentioned in Sec. 2.1, both the user’s pass-

word as well as the authenticator cookie are communicated
in cleartext to the server. This opens the communication to
various network-level attacks:

For one, every party that is able to observe the network
traffic between the browser and the server can simply sniff
the password or cookie value and abuse these credentials
under the identity of the user. Furthermore, parties with
direct access to the network link can also launch man-in-
the-middle attacks, which allows the dynamic modification
of HTTP requests and responses.

To counter these threats, the SSL/TLS protocol was in-
troduced, which provides end-to-end confidentiality and in-
tegrity guarantees on top of TCP, making the sniffing of au-
thentication credentials infeasible. Furthermore, SSL/TLS
provides a PKI-based scheme to prove the server’s identity
to the user. This way, attempted man-in-the-middle attacks
can be mitigated (as long as the user does not choose to
ignore the warning dialogues).

SSL Stripping: Most Web applications serve content
both encrypted, via HTTPS, as well as unencrypted, via
HTTP. Unfortunately, if the user does not explicitly specify
the protocol when he accesses a Web page, browsers default
to HTTP. In consequence, in the majority of all cases, the
first HTTP request to a server is sent via plain HTTP. This
opens a loophole for a network-based man-in-the-middle at-
tacker – the so-called SSL Stripping attacks [26].For this
first request, an end-to-end SSL/TLS connection has not
been established yet. Thus, the attacker can set himself in
between the browser and the server and modify the server’s
responses. This way, even if the server requires HTTPS
for certain operations and tries to redirect the browser ac-
cordingly, the attacker can simply remove these redirection
attempts from the server’s responses, before they reach the
client. The client is forced to indefinitely communicate un-
encrypted.

To combat this problem, the HSTS HTTP response
header [17] was created. This header tells the browser that
from now on for a defined time period, all communication
with the server shall be conducted using HTTPS. Under the
assumption that the first connection to the server has been
done using an attacker-free network path, from that point
on the browser will reliably and exclusively use HTTPS to
communicate with this server. This way, SSL stripping at-
tempts are made impossible.

Further issues with SSL/TLS: The recent past has
shown, that the current state of SSL/TLS is not fully bullet

Transport HTTP Cookie App
SSL/TLS X
HSTS X
HTTPonly X
Anti CSRF (Xa) X
Session Fix. (Xb) (Xc) X
Anti Framing Xd Xe

a: Origin header, b: Origin-Bound Certs (exp.),

c: Origin flag (exp.), d: X-Frame options, e: JS-framebuster

Table 1: Overview of countermeasures and their re-
spective implementation levels

proof. For one, the security of HTTPS-based communica-
tion heavily relies on the security policies and practice of the
Certification Authorities (CAs), that issue the root certifi-
cates which are included in Web browsers by default. How-
ever, issues in that domain have been reported repeatedly,
e.g., unlimited RA certificates have been issued [16] and the
internal systems of several CA’s have been compromised [10,
9]. As the CA system and its security is out of reach of the
application’s developers and operators, the current approach
offers severely limited options to mitigate such threats.

2.2.2 Issues Related to Cookie-Based Authentication
Tracking

As discussed above, after the initial authentication pro-
cess, the cookie value becomes the user’s authentication cre-
dential. However, HTTP cookies have not been designed
with security in mind and were never intended to be used
for this purpose.

Session hijacking through cookie theft: For one,
based on the fact that the existence of the cookie value in
a request suffices that the request is recognized to be au-
thenticated, every party that can obtain this value is able to
send arbitrary authenticated requests under the identity of
the user. As, by default, the cookie value is sent in cleartext,
every party with access to the network can sniff the value for
future abuse. While SSL/TLS protects against this threat,
many sites only protect the login page with SSL/TLS and
then revert back to plain HTTP [19], leaving the cookie ex-
posed.

Even in the existence of an uncompromised SSL/TLS con-
nection, the cookie is readable by default through JavaScript
via the document.cookie property. Hence, a simple Cross-
site Scripting (XSS) vulnerability allows to leak the cookie’s
value to the adversary. To counter this threat, browser
vendors introduced the HTTPonly-flag [28], which hides the
cookie value from JavaScript. This flag has to be set explic-
itly by the developer to mark the authentication cookie.

Session Fixation: The HTTPonly-flag only prevents read
access to the cookie value. However, an attacker is still able
to set or overwrite cookie values. Hence, if he is able to
set cookies for an attacked domain in the user’s browser,
he can launch a session fixation attack in which he tricks
the application to reuse a value controlled by the attacker
as the user’s authentication token. Possible scenarios, in
which attackers are able to set cookies for foreign domains
include XSS, HTTP header injection [23], or insecure sub-
domains [22].

While this problem is partially addressed with currently
experimental browser features [6, 2], the only reliable way

for an application to mitigate this attack, is to renew the
cookie’s value each time the authorization level of the user
changes [21].

Cross-site Request Forgery By default, the browser
attaches all cookie values that belong to a given origin to ev-
ery outgoing HTTP request to the corresponding site. How-
ever, due to the hypertext background of the Web, several
HTTP-tags, such as img, script, or iframe, have the in-
herent ability to create cross-domain HTTP requests. Re-
gardless of the actual origin of these elements, the browser
attaches the target domain’s cookies to all HTTP requests
that are created this way. This circumstance leads to an
attack vector known as Cross-site Request Forgery (CSRF):
It is possible for any Web site which is rendered in the user’s
browser to send authenticated HTTP requests to all other
Web sites, which currently maintain an authentication con-
text with the browser.

To prevent third parties abusing this capability to initiate
state-changing actions under the user’s identity, the devel-
oper has to protect all sensitive interfaces of his application.
This can be done either using secret nonces [33] or through
strict checking of the origin request header [3].

Clickjacking: While being only partially related to au-
thentication tracking, Clickjacking [15] (also known as “UI
Redressing”) is a class of attacks in the CSRF family. Click-
jacking exploits the fact, that due to the cookie rules, for-
eign sites can load authenticated, crossdomain content into
iframes. Using cascading style sheets, these iframes can
be hidden from the user (e.g, by making them completely
transparent) and, thus, the user can be tricked to interact
with them via clicks or drag’n’drop.

To protect users from such attacks, the developer has to
utilize JavaScript framebusting code [35] or the X-Frame-

Options response header [27].

2.2.3 Phishing
A further serious threat is known by the term “Phish-

ing” [30]. Phishing attacks aim to steal the user’s password
through simple decoy: A site under the control of the at-
tacker imitates domain name and design of the target Web
site. The user is tricked to enter his password into the forged
site under the assumption that he interacts with the legit-
imate application. As HTTP transports the password in
cleartext to the communication partner, the attacker is able
to obtain and abuse it. A similar approach is followed by
“Pharming” [39], a variant of phishing, which utilizes com-
promised DNS responses.

Due to its social engineering component, there is no straight
forward technical solution to combat phishing, as long as the
passwords are still sent over the wire. To mitigate the threat,
browsers currently check visited URLs for known phishing
sites and warn if such a page is accessed [14].

2.3 Summary
To sum the up the previous sections: The current praxis

of Web application authentication and authentication track-
ing is secure if (and only if) the following holds:

• The password is transmitted over an uncompromised
SSL/TLS connection in which the authenticity of the
Web server has been verified. This requires among oth-
ers robust defense against SSL-stripping attacks [26],
e.g., utilizing the HSTS HTTP response header [17].

• All further requests, both belonging to the current ses-
sion as well as all future sessions, are transmitted over
an uncompromised SSL/TLS connection, as long as
the authenticated cookie is valid.

• The authenticated cookie is secured against JavaScript
read access by the HTTPonly cookie attribute [28].

• The value of the authenticated cookie is changed ev-
ery time the authorization level of the user changes to
combat potential session fixation vulnerabilities [21].

• State-changing interfaces are secured against CSRF
using server-side checking of security nonces [33] or
strict enforcement of matching origin HTTP response
header [3].

• UI redressing attacks are avoided by framing preven-
tion [27, 35].

All these measures have to be explicitly introduced and are
realized at different positions and abstraction levels within
the application architecture, spanning from securing the low-
level transport layer via SSL to application layer anti-CSRF
prevention (see Table 1 for an overview). Furthermore, even
mitigation measures that are positioned at the same level
within the application architecture often have to be imple-
mented at separate places in the application’s code.

And even if all these factors hold, the basic interaction
pattern is still susceptible to phishing attacks, as the current
scheme requires sending the password to the server as part
of each login process.

3. PROTOCOL DESIGN
As discussed above, the current state exposes numerous

security shortcomings. In this section, we present Better-
Auth, an improved password scheme which is tailored to the
Web’s inherent characteristics and addresses the identified
problems of the current scheme.

3.1 Design goals
Before we explain the technical aspects of BetterAuth, we

briefly state our design goals:
Secure by default: BetterAuth is designed to mitigate the

weaknesses of the current approach (see Sec. 2). In particu-
lar, these security goals are realized without explicit enabling
steps by the developer.

No mandatory reliance on non-existing browser features:
BetterAuth is designed in a fashion that allows an imple-
mentation for today’s browsers. This allows an immediate
deployment without the need to wait for browser vendors to
implement native support.

No security regression: Regardless of the form of imple-
mentation (browser-based or pure JavaScript), BetterAuth
has to be at least as secure as the current approach. This
means a (re-)introduction of security problems, which are
not currently present, is not acceptable.

3.2 High-level overview
Our proposed scheme consists of two steps, implemented

as subprotocols:
An initial mutual authentication protocol with integrated

key negotiation: The browser and the server both prove
their knowledge of the password and jointly generate a per-
session, shared secret which is used for further authentica-
tion tracking.

And an authentication tracking scheme which is based on
request signing: Every further request from the browser to

the server is signed using the freshly generated shared se-
cret, if the request satisfies certain criteria (see Sec. 3.5 for
details). Only requests with such a signature are regarded
by the server as authenticated.

In the following sections, we give details on the realization
of the two subprotocols.

3.3 Initial mutual authentication
As motivated above, one of BetterAuth’s pillars is a mu-

tual authentication step, which results in a shared crypto-
graphic session key. Such mutual authentication schemes
have received considerable attention in the past. In the given
scenario both parties already share a textual secret (i.e., the
password). Hence, a suiting choice for this task is a mem-
ber of the password authenticated key exchange (PAKE)
family [12]. PAKE protocols utilize well established cryp-
tographic building blocks, such as the Diffie-Hellman key
creation, and protect the communication against active net-
work attackers using the pre-shared password.

While various protocols match our requirements, we se-
lected [32] for our implementation, a scheme which is cur-
rently under active standardization by the IETF and, thus,
has the potential for future adoption by the browser vendors.
The protocol works as follows (see Figs. 1 and 2):

1. Initial Handshake: The browser sends a request tar-
geted at the restricted resource. Along with this re-
quest, it sends the user’s ID (UID, e.g., the user name).
This causes the server to create the server-side partial
key (SPK) for the Diffie-Hellmann key generation. The
value is encrypted with the password1, which has been
set for the given UID.

2. Key exchange: The encrypted SPK is sent back to the
browser as part of a 401 response. The browser creates
the client-side Diffie-Hellmann partial key (BPK). The
browser is now able to calculate the session key SSK
using SPK and BPK. In addition BPK is encrypted
with the password and added to the next request to
the server.

3. Mutual authentication: The browser signs (see Sec. 3.4)
the BPK carrying request using SSK. The server re-
ceives the request, calculates SSK himself and verifies
the request signature. As the browser can only cor-
rectly compute SSK, if it knows the password, the cor-
rectness of the signature is used as authentication proof
by the server. Hence, the server sends the restricted
resource to the browser. Furthermore, the server also
signs the response using SSK, to let the browser verify
the server’s knowledge of the password.

3.4 Request Signing
After the first protocol step has concluded successfully,

both parties share a fresh symmetric key SSK, which from
now on will serve as the basis for authentication tracking.
Our authentication tracking mechanism is realized by
HMACs [24], a well established Message Authentication Code
scheme which utilizes cryptographic hash functions.

The client attaches an HMAC-based signature to all fur-
ther requests to the server which satisfy the criteria given in
Sec. 3.5, closely mimicking the current practice of automat-
ically adding cookie headers to outgoing requests. For GET
requests, the URL in a normalized form and selected request

1NB: This step can also be done with salted passwords.

Browser' Server'

GET'URL$

401'Unauthorized''

GET'URL$

200'Found$

Ha
nd

sh
ak
e'

M
ut
ua
l'

Au
th
en

@c
a@

on
'

Key'exchange'

Figure 1: Initial auth. (HTTP communication)

headers are signed, for POST requests, also the POST pa-
rameters are included in the signature. Only requests, for
which the server can successfully validate the correctness
of the HMAC are recognized to be properly authenticated.
This way, both the authenticity as well as the integrity of
the received requests are ensured.

3.5 Context-Dependent Authentication
As discussed in Sec. 2.2.2, several security problems - most

notably Cross-Site Request Forgery - are caused by the fact
that currently all requests that originate from an authenti-
cated browser are automatically equipped with the authen-
tication credentials, i.e., the authentication cookies.

Our approach breaks from this troublesome behavior and
instead only signs outgoing requests if the request’s origin,
i.e. the Web page which initiated the request, is already in
an authenticated state with the server. Hence, we enforce
in-application authentication tracking. All requests that are
generated in the browser from outside of the Web applica-
tion, i.e., from third party Web sites, are not signed and, in
consequence, not treated as authenticated by the server.

3.6 Public Interfaces
While a strict enforcement of context-dependent authenti-

cation would provide robust security guarantees, it is too in-
flexible to cater to all existing usage patterns of the Web. For
example, social Web bookmarking services, such as
delicious.com provide one-click interfaces to add book-
marks from external pages. Such requests need to be pro-
cessed in the user’s authentication context, as they commit
state changing actions to the user’s data. However, as they
are generated from outside of the Web application’s authen-
tication context, they would not receive a signature. There-
fore, to enable such scenarios, our approach supports the
declaration of public interfaces. Such a public interface is a
URL for which the server opts in to receive authenticated
requests, even if they originate from outside of the applica-
tion’s authentication context. A Web application’s public
interfaces, if they exist, are communicated to the browser
during the initial key exchange using a simple policy for-
mat.

3.7 Resulting Authentication Tracking Logic
In consequence, the decision process which requests to sign

works as follows:
1. Test: Check that the target URL of the request points

to a domain, for which currently a valid BetterAuth

Browser' Server'

UID$
UID,PW

enc(SPK)PW''

enc(BPK)PW,'ReqSig$

ResSig,$Response'body'$

PW$

Figure 2: Initial auth. (cryptographic values)

authentication context exists. Such a context exists, if
in the key storage a valid SSKapp key could be found,
which is assigned to the domain value and that has not
yet expired.

2. Test: Verify that the request is entitled to be signed.
This means, check:

• Was the request generated within the application?
This means that the HTML element which was re-
sponsible for creating the request (e.g. hyperlink-
navigation, form submission, or JavaScript ac-
tion) is rendered within the browser in the origin
of the authenticated application.

• Or, is the target of the request contained in the
applications’s list of public interfaces?

3. Action: Normalize the request data (Method, URL,
selected HTTP headers, request body) and create an
HMAC signature using SSKapp as signature key.

4. Action: Attach the resulting request signature in an
Authorization header to the request.

4. IMPLEMENTATION
In this section, we present our experiences on practically

implementing BetterAuth. We created two different client-
side implementations: For one, we built a Firefox browser
extension in order to be able to assess how applications
would behave, if the BetterAuth-protocol was implemented
as a native part of the Web browser (see Sec. 4.1). Further-
more, we implemented BetterAuthcompletely in standard
JavaScript (see Sec. 4.2). Using this implementation, Web
applications could utilize the protocol during a transitional
phase, in which only a subset of browsers support the ap-
proach natively.

4.1 Native Implementation
As mentioned above, we approximated a native browser

implementation by realizing our approach in the form of a
Firefox extension. The extension hooks itself as an observer
into the browser’s rendering process and monitors the out-
going HTTP requests. Whenever an authentication with a
BetterAuth-enabled site is initiated or a request is sent to a
domain for which an established BetterAuth authentication
context exist, the extension becomes active.

4.1.1 Initial Authentication
If an HTML form is processed during rendering, which is

marked with the custom attribute data-purpose= "better-

auth" the extension becomes active and the submission pro-
cess of this form is intercepted: Before submitting the form,
the username and password data is retrieved from the re-
quest data and used to initiate the BetterAuth-authentication
handshake. After receiving the 401 response, the extension
removes the password value from the request’s data and sub-
mits the form.

4.1.2 Authentication Tracking
As discussed in Sec. 3.4, the authentication tracking mech-

anism mimics the behavior of Web browsers in respect to
automatically adding cookie headers to requests that are
targeted to the cookie’s domain. The extension keeps track
of currently active authentication contexts. Whenever a re-
quest is targeted towards a domain, for which such an au-
thentication context exists, the extension verifies that the
request originated from within this authenticated context
or whether the target URL is listed in the application’s set
of public interfaces (see Sec. 3.5). If one of these conditions
is satisfied, the extension transparently signs the outgoing
request.

4.2 JavaScript Implementation
Our solution is designed in a fashion that allows to create

a pure JavaScript fallback for browsers which do not support
our authentication scheme natively. This way, a transitional
phase can be supported, which allows developers to already
use the mechanism without requiring to provide a separate
authentication scheme for legacy browsers. In this section,
we document the design of the JavaScript implementation
of BetterAuth.

4.2.1 General Approach
The core of the transitional implementation is the replace-

ment of native navigation operations, such as form submis-
sions and page transitions, with a JavaScript initiated load-
ing mechanism. This way, the initial authentication hand-
shake can be executed and all further outgoing requests can
be signed by JavaScript before they are sent to the server.

This approach is realized using four distinct elements: A
dedicated form handling for the initial authentication (see
Sec. 4.2.2), a request signing component (see Sec. 4.2.4),
and a dedicated page loader object for pure page transitions
(see Sec. 4.2.5). Furthermore, we utilize domain isolation to
keep the key material out of reach of potentially untrusted
JavaScript code (see Sec. 4.2.3).

4.2.2 Initial Authentication
Implementing the actual initial authentication handshake

is straightforward: The BetterAuth-enabled HTML form
executes a JavaScript function on form submission which
conducts the key exchange handshake. For this purpose,
the username and password values are read from the DOM
elements. Using the XMLHttpRequest object, the script
creates the OPTIONS request to the server’s authentica-
tion interface. After receiving the server’s encrypted Diffie-
Hellman key and the optional password salt in the 401 re-
sponse, JavaScript calculates the browser’s Diffie-Hellman
key and encrypts it with the password. In addition, after
sending the key to the server, the script calculates the ses-
sion signing key using the two key fragments.

4.2.3 Isolating the Secure Key Storage
As in Sec. 3.1 stated: It is unacceptable for any aspect

of our technique to introduce security flaws which are not
present in the current state. For this reason, we have to
take measures to separate the key material from potentially
untrusted JavaScript code.

An implementation of the authentication tracking process
requires that the session signing key is handled by standard
JavaScript functions. In consequence, a careless implemen-
tation would lead to a situation in which an XSS-attack
could be used to steal this key and leak it to the adver-
sary. Such an attack would be comparable to XSS-based
cookie stealing, which can effectively be mitigated using the
HTTPonly cookie flag. Hence, to avoid the introduction of
security regression, we have to ensure that the key material
is kept out of reach of untrusted parties.

To achieve this, we leverage the guarantees provided by
the same-origin policy [34] and the postMessage API [38]:
First, we introduce a separate subdomain, which is respon-
sible to handle and store the signing key. This domain only
contains static JavaScript dedicated to this task and noth-
ing else. Based on this, we consider it to be feasible that the
code running in this origin is well audited and XSS-free. An
HTML document hosted on this subdomain which contains
all necessary scripts, is included in the main application’s
pages using an invisible iframe.

The main application communicates with the key han-
dling scripts on the secure subdomain using the postMessage
API [38]: The postMessage API is a mechanism by which
two browser documents are able to communicate across do-
main boundaries in a secure manner. A postMessage can be
sent by calling the method postMessage(message, targe-

tOrigin). While the message attribute takes a string mes-
sage, the targetOrigin represents the origin of the receiving
page. In order to receive such a message the receiving page
hast to register an event handler function for the message

event. When receiving a message via the event handler func-
tion, the browser passes additional metadata to the receiving
page. This data includes the origin of the sender. Hence,
the postMessage API can be used to verify the authenticity
of the sending page.

After a successful key exchange, the component responsi-
ble for the initial handshake passes the session signing key
via postMessage to the secure subdomain. The receiving
script stores the key, depending on its configured lifespan,
either via the subdomain’s sessionStorage or localStorage
mechanism [11].

4.2.4 JavaScript-Based Request Signing
Following the initial authentication, all further requests

have to carry a correct HMAC signature to be recognized as
authenticated. In consequence, all outgoing requests have to
be initiated via JavaScript. This is done by replacing hyper-
link targets and form actions with JavaScript event handlers,
which pass the target URL to the signing component of our
implementation. This component normalizes the request’s
data and then passes it, using the browser’s post-message
API, to the secure iframe (see Lst. 1).

As mentioned above, a central feature of the post-message
API is, that the origin domain of the incoming requests is
communicated in an unspoofable fashion. Hence, the request
signing script can verify that the call to the signing function
was created within an authenticated context (see Sec. 3.5),

<iframe+src="secure.app.com">+

<authen5cator.js>+

<pageloader.js>+

set+session+signing+key+

++key+storage+

get+request+signature+

signed+request+

Figure 3: Domain isolated key handling

Code Listing 1 Request initation (simplified sketch)

<a href="#" onclick=
"initAuthRequest(’submod.jsp?a=b’)">

<script >
window.addEventListener

("message", handleSignedRequest);
// Get request signature
function initAuthRequest(requestData){

var rq = normalize(requestData);
window.postMessage(rq,

"http :// secure.app.com")
return false;

}
// receive signed request
function handleSignedRequest(event){

if(event.origin ===
"http :// secure.app.com"){

[attach request signature to request]
}

}
</script >

and not by an untrusted third party which tries to abuse
the functionality. Then, the signing component retrieves the
signing key from localStorage, conducts the signing process,
and passes the resulting values back to the main application,
again using the postMessage functionality (see Lst. 2).

For apparent reasons, all page transitions and related re-
quest initiating actions of the main application have to uti-
lize the request signing functionality. While for newly writ-
ten applications, this won’t cause a lot of effort, legacy appli-
cations have to be adapted to support the novel functional-
ity. However, as discussed in [1], many applications can eas-
ily be adapted by traversing the application’s pages DOM
on load and patching the encountered links and forms to
use the request signing functions. Alternatively, server-side
rewriting of outgoing HTML could be utilized, modifying
hyperlinks and form-actions to utilize JavaScript page navi-
gation (see Lst. 1). Finally, for applications that mainly rely
on AJAX driven client/server interaction, the request sign-
ing functionality can be introduced transparently replacing
the XMLHttpRequest object with an object wrapper which
implements the necessary actions.

Code Listing 2 Request signing code on the secure subdo-
main (simplified sketch)

window.addEventListener
("message", handleSignOrder);

// Create signed request
function handleSignOrder(event){

if(authContext(event.origin)){
var key = getSSK(event.origin)
var sig = signReq(event.data , key)
event.source.postMessage(sig ,

event.origin)
}

}

4.2.5 Accessing Public Interfaces
The final puzzle piece in the transitional implementation

is a facility that enables external sites to navigate to the
application’s public interfaces (see Sec. 3.5). To recall, a
public interface is a URL to which external sites are allowed
to navigate in an authenticated state (e.g., for posting to
social sharing sites).

For this purpose, we utilize a pageloader object: The page
loader is a small JavaScript that is delivered by the appli-
cation in case an unauthenticated request has been received
for a URL which requires authentication and is contained
in the application’s set of public interfaces. The script is
carried in the body of the initial 401 response during the
key exchange handshake. In consequence, if such a response
is received during a standard Web navigation process (op-
posed to the explicit authentication handshake executed by
the native or transitional implementation), the page loader
is executed in an otherwise blank HTML document.

The pageloader’s source code is created dynamically by
the server to contain the request’s data which needs to be
signed, in most cases mainly consisting of the original re-
quest’s URL. The page loader dynamically includes the iframe
to the secure subdomain and utilizes the standard request
signing functionality of the implementation (see Lst. 1) to
create a second, now authenticated request. The strict ori-
gin checking mechanism of the subdomain’s signing interface
robustly prevents potential abuse.

5. EVALUATION

5.1 Security Evaluation
In this section, we examine how capable BetterAuth is in

mitigating the security threats (see Sec. 2).
Network-based attacks: At no point, passwords nor

authentication tokens are transmitted over the network.
Therefore, sniffing attacks are powerless. Also, due to the
mutual authentication properties of the initial authentica-
tion, man-in-the-middle attacks are mitigated. However,
please note, that BetterAuth only proves that the server
indeed possesses the password. Furthermore, the security
properties of BetterAuthdo not rely on the security of an
underlying SSL/TSL connection. In consequence, SSL strip-
ping attacks or CA breaches have no effect.

Issues related to cookie-based authentication track-
ing: There is no authentication cookie anymore, which could
be stolen or manipulated. Hence, session hijacking and fix-
ation attacks do not apply. Furthermore, CSRF attacks are

mitigated, as only in-application requests receive a signa-
ture, leading to a situation in which crossdomain requests
are treated as unauthenticated by default. Only, if URLs are
explicitly added to the list of public interfaces, the developer
has to ensure, that crossdomain request to these URLs do
not cause unwanted side effects. Finally, as we will dis-
cuss further in Sec. 5.3, Clickjacking attacks are partially
addressed but still might occur.

Phishing: The password never leaves the browser. Hence,
phishing attacks are bound to fail. However, this property
only holds, if the password is entered only in BetterAuth-
enabled input fields (see Sec. 5.3 for a further discussion of
this limitation).

Limitations of the JavaScript implementation: Un-
like a native implementation, the transitional implementa-
tion is susceptible to active man-in-the-middle attackers.
The reason for this is, that the cryptographic components,
which are executed in the secure subdomain’s iframe are
transported over the compromised network connection. Hence,
the adversary could alter the transmitted source code in a
fashion that leaks the session signing key or the user’s pass-
word to the outside. Hence, at least the secure subdomain’s
content should be communicated via HTTPS.

5.2 Performance Evaluation
We don’t expect a native implementation to cause consid-

erable overhead. The utilized algorithms are in similar form
already highly efficiently implemented both in browsers and
servers as part of the SSL/TLS suite. Hence, the intro-
duced overhead will be at most in the same range as over-
head introduced by HTTPS communication. However, for
the transitional implementation, the client-side component
is implemented in pure JavaScript. Thus, a potential for
noticeable overhead is given. Fortunately, in the last couple
of years the browser vendors were inclined in an arms race
on rapidly improving the performance of their JavaScript in-
terpreters. To evaluate, how a JavaScript realization of the
initial authentication would perform under realistic circum-
stances, we implemented the protocol as outlined in Sec. 4.2.
For the cryptographic operations, we utilized the “Big Inte-
ger Library”2 and the “Stanford Javascript Crypto Library
(SJCL)”3. We benchmarked our implementation on three
different machines running different operating systems each
(Linux, Mac Os X, and Windows 7) and in total six browsers
(see Tab. 2 for further details). The results of our bench-
marking efforts can be obtained in Tab. 2. Among all con-
figurations, the best performance could be observed with
the Chrome browser, which reliably stayed below 300 ms,
using a reasonable key length of 1024 Bit. The worst perfor-
mance was exposed by Internet Explorer 9, which consumed
in average 1314 ms for the same operations. Please keep in
mind, that this overhead occurs only once during the whole
process. The HMAC based authentication tracking can be
implemented highly efficient and, thus, causes negligible per-
formance effects.

5.3 Open Issues
The password entry field: BetterAuth provides strong

protection against phishing attacks on the protocol level.
However, this protection can be circumvented by the at-
tacker on the GUI-level: As duly observed in [36, 12], if

2http://leemon.com/crypto/BigInt.html
3http://crypto.stanford.edu/sjcl/

D-H key length
Browser 768 Bit 1024 Bit 1536 Bit

Chromium/Linux1 116.7 261.1 876.6
Firefox/Linux1 182.6 426.8 1476.6
Chrome/Mac2 113.9 257.9 862.6
Safari/Mac2 405.6 942.5 3069.7
Chrome/Win 73 127.2 281.9 932.7
IE 9/Win 73 592.2 1314.6 4511.2

1: Acer Aspire, Ubuntu 11.10, Core i5, 2.53 GHz, 4GB RAM

2: MacBook Pro, Os X 10.7.2, Core i7, 2,2 GHz, 8GB RAM

3: ThinkPad T410s, Win7 Pro x64 SP1, Core i5 2,6 GHz, 4GB RAM

Table 2: JavaScript implementation performance
(times in ms, averaged over ten runs)

the user can be tricked into entering his password in non-
BetterAuth form field, the attacker is still able to steal it.
What is needed to close this hole is a visually unspoofable
“trusted path” [43] from the user to a well isolated password
handler within the browser. If such functionality is pro-
vided, further security guarantees in respect to the handling
of the password data can be robustly introduced. Merely
implementing such an approach is not a hard task on the
engineering level, in parts it has already been done with the
authentication dialogues for HTTP basic and digest authen-
tication as well in various research prototypes. However, it
is a major challenge in UI design. A right balance has to be
found between the needs of Web UI designers and the ability
of users to reliably recognize such “secure” entry forms.

Limited protection against Clickjacking: As moti-
vated in Sec. 2.2.2, Clickjacking can be regarded as a class
of vulnerabilities rooted in the current practice of authen-
tication tracking. More precisely, Clickjacking is based on
the adversary’s capability to load cross-domain, authenti-
cated GUI interfaces into the iframe. If BetterAuth is used
without any configured public interfaces (see Sec. 3.5), this
attack pattern would be infeasible, as no entry point into
the application logic can be accessed from outside of an au-
thenticated context. However, this protection ends as soon
as public interfaces are added: In this case, the application
probably offers a navigation path from the public interface
to the targeted GUI interface. By tricking the user into
multiple click-interactions with the disguised iframe, the at-
tacker may be able to trick the user into unknowingly con-
duct this navigation. As all requests which originate from
the public interface come from an authenticated context,
they transparently receive request signatures, resulting in
potential access of the attacker to the targeted Web GUI.
Therefore, public interfaces should still be protected with
anti-framing measures. Nonetheless, BetterAuth raises the
bar of difficulty for Clickjacking attacks and with the set of
public interfaces being limited and explicitly configured, full
anti-framing protection is a straight forward task.

Replay attacks: If implemented in the from it is de-
scribed in Sec. 3, the communication between browser and
server would be susceptible to replay attacks from network
attackers. We left handling of this issue out of the descrip-
tion for brevity and clarity reasons. However, adding replay
protection to the authentication tracking process is straight-
forward, using a sliding window of monotonous growing nonces
in the requests and limited state-keeping on the server-side.

6. RELATED WORK
Isolated security aspects of the Web authentication have

received considerable attention, foremost the areas of phish-
ing [8, 37, 41],cross-site scripting [25, 29, 20, 31]and CSRF [3,
33]. Due to the narrow focus of these works, we omit a de-
tailled discussion. For the remainder of this section, we fo-
cus on password protocols and approaches that target Web
authentication.

Password protocols: Bellovin and Merritt proposed
the Encrypted Key Exchange (EKE) protocol that is based
on pre-shared secretes, i.e. passwords, and secure against
dictionary attacks [4, 5]. They put emphasis on consider-
ing which messages should be encrypted with the password
without increasing the risk of offline, brute-force attacks.
One drawback of this approach in modern web scenarios lies
in the fact that the password has to be stored in cleartext
on server side. Jablon proposed an improved approach that
eliminates this need [18]. Wu proposed a modified version
of EKE, called Asymmetric Key Exchange (AKE), which is
finally used to derive the Secure Remote Password (SRP)
protocol [42]. It ceases to use symmetric cryptography and
focuses on strong security properties with respect to leak-
age of server’s user database or session keys. Steiner et
al. describe the integration of a slightly modified version
of Bellovin’s and Merritt’s approach [4], named DH-EKE,
into TLS [40]. This way, they eliminate the need for a pub-
lic key infrastructure. Due to mutual authentication, certifi-
cates become obsolete. Their Secure Password-Based Cipher
Suite for TLS implements confidentiality and authenticity.

Web authentication: SessionLock [1] is closely related
to our transitional JavaScript implementation of BetterAuth.
The paper demonstrates how standard JavaScript can be
used to substitute cookie-based authentication tracking with
a browser-driven HMAC scheme. SessionLock does not pro-
tect against CSRF problems and does not handle the initial
authentication step. [2] introduces browser authentication
without user authentication: The browser, generates a self-
signed certificate. This certificate must not contain any user-
related information. A new certificate is issued by the client
for every single server domain (“origin”). Session tracking
can be secured by relating session cookies to the respective
client certificate, hence, mitigating several of the cookie re-
lated threats, such as SID theft or session fixation. Finally,
the most recent draft of HTTP/1.1 specification provides an
extension of long-known HTTP Basic and Digest Authen-
tication based on Challenge-Response Authentication [13],
which prevents known eavesdropping attacks on the former
HTTP authentication standards.

Chen et al. address the problem of cross-site attacks that
occur while surfing sensitive and non-trustworthy websites
at the same time in one browser [7]. Therefore, they iso-
late browser sessions which prevents cross-domain attacks.
Same-domain attacks are out of scope of this approach. This
feature is comparable with our context dependent authenti-
cation and public interfaces. The security level of app isola-
tion is equivalent to surfing different websites using different
browsers.

7. CONCLUSION
In this paper we presented BetterAuth. BetterAuth is a

mutual Web authentication protocol that was designed to
be secure by default, thus, freeing the developers and opera-
tors of Web applications from the need to counter potential
threats at various heterogeneous places in the application’s
architecture, as it is required by the currently established
approach. BetterAuth significantly improves the susceptibil-
ity of the authentication process to known threats, ranging
from network attacks, over Cross-site Request Forgery, up to
Phishing. Furthermore, the protocol was designed in a fash-
ion that allows an implementation in standard JavaScript,
enabling its deployment even in situation in which no
widespread native browser support is present yet.

8. REFERENCES
[1] B. Adida. Sessionlock: securing web sessions against

eavesdropping. In Proceeding of the 17th international
conference on World Wide Web, WWW ’08, pages
517–524, New York, NY, USA, 2008. ACM.

[2] D. Balfanz, D. Smetters, M. Upadhyay, and A. Barth.
TLS Origin-Bound Certificates. [IETF draft], http://
tools.ietf.org/html/draft-balfanz-tls-obc-01,
Version 01, November 2011.

[3] A. Barth, C. Jackson, and J. C. Mitchell. Robust
Defenses for Cross-Site Request Forgery. In CCS’09,
2009.

[4] S. M. Bellovin and M. Merritt. Encrypted Key
Exchange: Password-Based Protocols Secure Against
Dictionary Attacks. In Proc. IEEE Computer Society
Symposium on Research in Security and Privacy,
pages 72–84, Oakland, CA, May 1992.

[5] S. M. Bellovin and M. Merritt. Augmented Encrypted
Key Exchange. In Proceedings of the First ACM
Conference on Computer and Communications
Security, pages 244–250, Fairfax, VA, November 1993.

[6] A. Bortz, A. Barth, and A. Czeskis. Origin Cookies:
Session Integrity for Web Applications. In W2SP
2011, 2011.

[7] E. Y. Chen, J. Bau, C. Reis, A. Barth, and C. Jackson.
App Isolation: Get the Security of Multiple Browsers
with Just One. In 18th ACM Conference on Computer
and Communications Security (CCS), 2011.

[8] R. Dhamija and J. Tygar. The Battle Against
Phishing: Dynamic Security Skins. In Symposium On
Usable Privacy and Security (SOUPS) 2005, July
2005.

[9] P. Eckersley. How secure is HTTPS today? How often
is it attacked? [online], https://www.eff.org/
deeplinks/2011/10/how-secure-https-today,
October 2011.

[10] P. Eckersley and J. Burns. The (Decentralized) SSL
Observatory. Invited Talk, Usenix Security 2011,
http://static.usenix.org/events/sec11/tech/

slides/eckersley.pdf, August 2011.

[11] I. H. (Ed. Web Storage. W3C Candidate
Recommendation,
http://www.w3.org/TR/webstorage/, December 2011.

[12] J. Engler, C. Karlof, E. Shi, and D. Song. Is it too late
for PAKE? In Proceedings of W2SP, 2009.

[13] R. Fielding, J. Gettys, J. Mogul, H. Frystyk,
L. Masinter, P. Leach, T. Berners-Lee, Y. Lafon, and

J. Reschke. HTTP/1.1, part 7: Authentication. [IETF
draft], http://tools.ietf.org/html/
draft-ietf-httpbis-p7-auth-18, Version 18,
January 2012.

[14] Google. Safe Browsing for Firefox. [application], http:
//www.google.com/tools/firefox/safebrowsing/,
(03/20/06), 2006.

[15] R. Hansen and J. Grossman. Clickjacking. [online],
http://www.sectheory.com/clickjacking.htm, last
accessed 02/13/12, August 2008.

[16] E. Henning. Trustwave issued a man-in-the-middle
certificate. [online],
http://www.h-online.com/security/news/item/

Trustwave-issued-a-man-in-the-middle-

certificate- 1429982.html, February
2012.

[17] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). [IETF draft],
http://tools.ietf.org/html/

draft-ietf-websec-strict-transport-sec-04,
Version 04, January 2012.

[18] D. Jablon. Extended Password Key Exchange
Protocols Immune to Dictionary Attacks. Enabling
Technologies, IEEE International Workshops on,
0:0248, 1997.

[19] C. Jackson and A. Barth. ForceHTTPS: Protecting
High-Security Web Sites from Network Attacks. In
WWW 2008, 2008.

[20] M. Johns. SessionSafe: Implementing XSS Immune
Session Handling. In European Symposium on
Research in Computer Security (ESORICS 2006).
Springer, September 2006.

[21] M. Johns, B. Braun, M. Schrank, and J. Posegga.
Reliable Protection Against Session Fixation Attacks.
In 26th ACM Symposium on Applied Computing (SAC
2011). ACM, March 2011.

[22] D. Kaminsky. h0h0h0h0. Talk at the ToorCon Seattle
Conference, http://seattle.toorcon.org/2008/
conference.php?id=42, April 2008.

[23] A. Klein. ”Divide and Conquer” - HTTP Response
Splitting, Web Cache Poisoning Attacks, and Related
Topics. Whitepaper, Sanctum Inc.,
http://packetstormsecurity.org/papers/general/

whitepaper_httpresponse.pdf, March 2004.

[24] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. RFC
2104, http://tools.ietf.org/html/rfc2104,
February 1997.

[25] M. T. Louw and V. Venkatakrishnan. BluePrint:
Robust Prevention of Cross-site Scripting Attacks for
Existing Browsers. In IEEE Symposium on Security
and Privacy (Oakland’09), May 2009.

[26] M. Marlinspike. New Tricks For Defeating SSL In
Practice. Talk at the Black Hat DC conference, 2009.

[27] Microsoft. Ie8 security part vii: Clickjacking defenses,
2009.

[28] MSDN. Mitigating Cross-site Scripting With
HTTP-only Cookies. [online],
http://msdn.microsoft.com/workshop/author/

dhtml/httponly_cookies.asp, (01/23/06).

[29] Y. Nadji, P. Saxena, and D. Song. Document

Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In Network & Distributed System
Security Symposium (NDSS 2009), 2009.

[30] J. Nelson and D. Jeske. Limits to Anti Phishing. In
Proceedings of the W3C Security and Usability
Workshop, 2006.

[31] N. Nikiforakis, W. Meert, Y. Younan, M. Johns, and
W. Joosen. SessionShield: Lightweight Protection
against Session Hijacking. In 3rd International
Symposium on Engineering Secure Software and
Systems (ESSoS ’11), LNCS. Springer, February 2011.

[32] Y. Oiwa, H. Watanabe, H. Takagi, B. Kihara,
T. Hayashi, and Y. Ioku. Mutual Authentication
Protocol for HTTP. [IETF draft], http://tools.
ietf.org/html/draft-oiwa-http-mutualauth-10,
Version 10, October 2011.

[33] Open Web Application Security Project. Cross-Site
Request Forgery (CSRF) Prevention Cheat Sheet.
[online],
https://www.owasp.org/index.php/Cross-Site_

Request_Forgery_(CSRF)_Prevention_Cheat_Sheet,
accessed November 2011, 2010.

[34] J. Ruderman. The Same Origin Policy. [online],
http://www.mozilla.org/projects/security/

components/same-origin.html (01/10/06), August
2001.

[35] G. Rydstedt, E. Bursztein, D. Boneh, and C. Jackson.
Busting Frame Busting: a Study of Clickjacking
Vulnerabilities on Popular Sites. In Web 2.0 Security
and Privacy (W2SP 2010), 2010.

[36] D. Sandler and D. S. Wallach. <input
type=“password”> must die! In Web 2.0 Security and
Privacy (W2SP). IEEE, May 2008.

[37] M. Sharifi, A. Saberi, M. Vahidi, and M. Zoroufi. A
Zero Knowledge Password Proof Mutual
Authentication Technique Against Real-Time
Phishing Attacks. In P. D. McDaniel and S. K. Gupta,
editors, ICISS, volume 4812 of Lecture Notes in
Computer Science, pages 254–258. Springer, 2007.

[38] E. Shepherd. window.postmessage. [online],
https://developer.mozilla.org/en/DOM/window.

postMessage, last accessed 02/12/12, October 2011.

[39] S. Stamm, Z. Ramzan, and M. Jakobsson. Drive-by
Pharming. In In Proceedings of Information and
Communications Security (ICICS ’07), number 4861
in LNCS, December 2007.

[40] M. Steiner, P. Buhler, T. Eirich, and M. Waidner.
Secure Password-Based Cipher Suite for TLS. In
NDSS, pages 134–157, 2001.

[41] M. Wu, R. C. Miller, and G. Little. Web Wallet:
Preventing Phishing Attacks by Revealing User
Intentions. In Proceedings of the second symposium on
Usable privacy and security (SOUPS 06), 2006.

[42] T. Wu. The secure remote password protocol. In
Proceedings of the 1998 Internet Society Network and
Distributed System Security Symposium, pages 97–111,
1998.

[43] K.-P. Yee. User interaction design for secure systems.
In Proceedings of the 4th International Conference on
Information and Communications Security, ICICS ’02,
pages 278–290, London, UK, UK, 2002.
Springer-Verlag.

