
1

Lightweight Integrity Protection for Web
Storage-driven Content Caching

Sebastian Lekies and Martin Johns
SAP Research Karlsruhe

{firstname.lastname}@sap.com

Abstract—The term Web storage summarizes a set of browser-
based technologies that allow application-level persistent storage
of key/values pairs on the client-side. These capabilities are
frequently used for caching of markup or script code fragments,
e.g., in scenarios with specific bandwidth or responsiveness
requirements. Unfortunately, this practice is inherently insecure,
as it may allow attackers to inject malicious JavaScript payloads
into the browser’s Web storage. Such payloads reside in the
victim’s browser for a potentially prolonged period and lead to
resident compromise of the application’s client-side code.

In this paper, we first present three possible attack scenarios
that showcase how an attacker is able to inject code into web
storage. Then we verify that Web storage is indeed used in the
outlined, insecure fashion, via a large-scale study of the top
500.000 Alexa domains. Furthermore, we propose a lightweight
integrity protecting mechanism that allows developers to store
markup and code fragments in Web storage without risking a
potential compromise. Our protection approach can be intro-
duced without requiring browser modifications and introduces
only negligible performance overhead.

I. INTRODUCTION

Since the rise of Web 2.0 applications a shift from server-
side to client-side functionality is perceivable on the Web.
Especially new HTML5 features such as Web Messaging,
Cross-Origin Resource Sharing or Offline Apps enrich the
user-experience of modern Web applications. However, with
the power of these new APIs comes the responsibility to utilize
these features in a secure fashion. In the past some research
work has already been conducted to reveal potential security
issues with client-side technologies [1, 3, 4, 6, 12].

In this paper we investigate HTML5’s Web Storage API that
consists of the SessionStorage and LocalStorage attributes [5].
Web Storage is a mechanism that allows a Web application
to store structured data within the user’s Web browser via
Javascript. While this API can be used for client-side state
management, it is also often used for caching[17] (See Section
IV for more details). Especially, in mobile environments where
bandwidth and latency matters Web-Storage-based caching can
be a powerful technique to decrease loading times by saving
and reusing frequently required scripts or style declarations on
the mobile device[17].

However, caching such content in a storage that is accessible
via scripting is a dangerous practice as it creates new attack
vectors for adversaries. The cause of the problem is the fact
that at one point in time, code written to the storage has to be
executed again. Hence, if an attacker is able to exchange the
cached code with his payload, the application automatically

runs the malicious content (See Section III for examples).
Well-known cross-site scripting defense techniques such as
input validation or output encoding are not applicable in this
scenario, as legitimate code fragments would also be rendered
void by these XSS filters.

In this paper we first investigate the usage of Web Storage
with regards to code caching by investigating the front pages
of the Alexa top 500.000 Web sites. Thereby, we found out
that 20,422 Web sites make use of client-side storage and that
386 Web sites store 2084 pieces of HTML, Javascript code
or CSS style declarations within Local- or SessionStorage.
Furthermore, we present a method that allows a Web appli-
cation to securely store code fragments on the client-side.
We achieve this by utilizing checksums that are calculated
for cached code. Whenever the code is fetched and executed
from Web Storage the application validates the checksum in
order to ensure integrity of the stored content. Therefore, an
attacker is not able to inject his payload into client-side storage
capabilities and thus attacks are rendered void.

The rest of the paper is structured as follows. After we
outlined the basics of Web Storage in Section II, we present
three attack scenarios in Section III that could be utilized by
an attacker to smuggle his payload into the client-side Web
storage of a victim. After that, we investigate the usage of Web
Storage by presenting the results of a large-scale study of the
Alexa top 500,000 Web sites in Section IV. As pointed out by
the study results Web Storage is used in an insecure fashion
when it is utilized for client-side code caching. Therefore, we
developed a JavaScript library that protects Web applications
from being exploited while still preserving the benefits of code
caching. The basic idea, an evaluation and possible limitations
of our approach are discussed in Section V. Finally, we present
related work in Section VI and a conclusion in Section VII.

II. TECHNICAL BACKGROUND

In this Section we briefly outline the technical backgrounds.
After covering the basics of Web Storage, we present different
use cases for the presented capabilities.

A. What is Web Storage?

Web Storage is a mechanism that allows a piece of
Javascript to store structured data within the user’s browser [5].
Web Storage is, thereby, an umbrella term for two related func-
tionalities - SessionStorage and LocalStorage. Each of these
storage types implements the same API and adheres to the



2

same security restrictions. The underlying storage mechanism
is implemented via a key-value scheme that allows to store,
retrieve and delete a String value based on a certain key (See
Listing 1 for an example).

Listing 1 Exemplary usage of LocalStorage

<script>
//Set Item
localStorage.setItem("foo","bar");
...
//Get Item
var testVar = localStorage.getItem("foo");
...
//Remove Item
localStorage.removeItem("foo");
...
//Clear all
localStorage.clear();

</script>

In general, access to data stored within Web Storage is
limited to same origin resources only. Each site gets one
storage area assigned to it, so that data of different origins
is strictly separated. Therefore, data stored by a Web site on
a.net is only accessible to other resources from a.net, but not
from b.net.

1) SessionStorage: SessionStorage was designed for
transaction-based scenarios in which a user is able to simul-
taneously carry out the same transaction in multiple browser
windows. Within the same window, data can be stored and
retrieved from the storage by any Web page loaded from the
same origin. A page loaded within another window posses its
own storage and hence is not able to access the data from
another window.

2) LocalStorage: LocalStorage differs from SessionStorage
in respect to scope and lifetime. As opposed to Session-
Storage, data within the LocalStorage can also be accessed
across different browser windows by same origin Web pages.
Furthermore, LocalStorage is persistent across sessions, while
data within SessionStorage is discarded whenever the corre-
sponding session is closed. (Note: The lifetime of a session
is unrelated to the lifetime of the corresponding user agent
process, as the user agent may support resuming sessions after
restart[5].)

3) GlobalStorage: Earlier versions of the HTML5 spec-
ification also contained the GlobalStorage directive. How-
ever, it was removed from the specification in favor of the
LocalStorage API [9]. GlobalStorage holds multiple private
storage areas that can be accessed over a longer period of time
across multiple pages and sessions. Although, GlobalStorage
is deprecated it is still implemented and used by some Web
applications.

4) IndexedDB: IndexedDB [14] is a further, experimental
client-side storage feature which is currently only supported by
Firefox and Chrome. Due to the currently incomplete browser
support for IndexedDB, we do not specifically address this
technology for the remainder of this paper. However, we do
not expect the usage patterns and resulting potential security

implications to differ from the corresponding results for the
established technologies.

B. Use cases for Web storage

Up to now, two usage patterns for Web storage have received
some attention: Keeping state in offline situations and using
Web storage for caching purposes. We briefly revisit these
concepts in this section.

However, the general concept of persistent, client-side Web
storage is still a rather recent addition to the Web application
paradigm. Hence, not much experience has been documented,
how these APIs end up being used by real-life Web appli-
cations. Hence, to collect practical insight into this area, we
conducted some applied survey work, which will be the subject
of Section IV.

1) State-keeping for offline apps: Modern browsers allow
Web applications to provide offline capabilities. For this, the
application can explicitly specify which of its Web resources
should be kept in the browser’s application cache [2]. This
is done using a dedicated manifest file that lists the URLs
of to be stored resources. In situations, in which the Web
browser is disconnected form the network, these files, which
were stored earlier, are loaded and rendered from the appcache.
However, as no network connection is present to propagate the
user’s action to the Web server, all actions, which may have a
permanent effect, have to be temporarily stored in the browser
until the browser reenters the online mode. For this purpose,
Web storage is well designed.

2) Using Web storage for controlled caching of Web con-
tent: The current caching facilities of Web browsers only
allow to cache the content of full HTTP responses, i.e.,
complete documents, scripts, or images. Furthermore, the
actual caching process is transparent to the application and
not under its control. Hence, in situation, in which the need
occurs to either cache only sub-parts of HTML documents or
in which the application needs closer control in respect to the
cached content and its usage, Web storage provides the needed
capabilities [15]. This seems to be especially appreciated in
the context of Web applications that target mobile devices,
which, unlike their modern desktop counterparts, may have
to deal with limited network bandwidth and high network
latency [17].

III. ATTACKS

A. Insecure usage of Web storage

As motivated in Section II-B2, a potential use case for Web
storage is application-level content caching. In this context, it
has been documented [4, 7], that some applications use Web
storage for caching Web page components, such as HTML
fragments, CSS styles, or Javascripts, which are meant to
be included verbatim into the Web page after retrieval from
storage (see Lst.2).

On first view, this behavior is safe: A site’s Web storage
is isolated from untrusted parties via the same-origin policy:
Only JavaScript, which is executed within the application’s
origin is allowed to access or modify the stored content.
However, the problem is, that in situation in which an attacker



3

Listing 2 Insecure usage of LocalStorage-data

<script>
if (cached){

var fragment = localStorage
.getItem("analytics");

document.write(fragment);
} else {

[retrieve code over the network]
}
</script>

might be able to temporarily circumvent this protection (more
on this below), he is able to elevate a temporary breach
(e.g., through a reflected XSS vulnerability) into a persistent
compromise of the Web application’s client-side code: By
inserting JavaScript code into one of the site’s code fragments
which are kept in Web storage, the attacker can ensure, that his
malicious payload is executed every time the victim accesses
the Web application with his browser, potentially for an
unlimited amount time. This in turn, enables attack payloads,
which were not possible otherwise, such as intercepting of
password entry or continuous user observation [7].

B. Attack scenarios

In total, we were able to identify three distinct attack
scenarios, which could allow an adversary to persist his script
payload in the victim’s browser.

1) Cross-site Scripting (XSS): If an XSS vulnerability ex-
ists in the application, an adversary is able to permanently
inject his payload into the site’s Web storage. It is insignificant,
if this XSS problem is ’only’ a reflected XSS that occurs
within a section of the site without sensitive information or
interfaces. Neither is it of importance, if the targeted user
maintains an authenticated state with the application at the
point of time when the attack happens.

The attack could be triggered much later, for example, when
the user actively enters the URL of the poisoned application
into the address bar of his browser. At this time security
aware users will be much less suspicious, as they did not enter
the Web site via a manipulated link. Therefore, victims will
probably more likely accept strange dialogs or weird behavior.

2) Untrustworthy networks: The existence of an XSS prob-
lem is not a necessary condition for the attack: Also every
time a potential victim uses an untrusted network, e.g., at a
local coffee shop, this action can open an opportunity for
an attacker to poison the targeted browser’s Web storage:
Within this untrusted network, the attacker utilizes active
network-level attack techniques to insert himself as a man-
in-the-middle into the victims HTTP communication. Having
achieved this, he is able to transparently modify the victim’s
HTTP communication. If the user directly accesses a site,
which uses Web storage in an insecure fashion, the attacker
can simply insert the JavaScript to modify the site’s storage
into one of the site’s legitimate HTTP responses.

Even if the user only visits unrelated sites and avoids
accessing security sensitive Web applications while using an
untrusted network, this attack is still possible: In such a case,

the attacker can force the browser to access the vulnerable
site through inserting a hidden iframe pointing to the site into
any delivered HTML content. In such cases, the attacker’s
payload will patiently reside in the browser’s Web storage until
later, potentially much later when the user actively accesses
the poisoned application again. In consequence, the actual
exploitation occurs at a point in time, in which the man-in-the-
middle condition does not exist anymore, and the user operates
in a perceived trusted network context.

Please note, that this specific attack vector only affects
HTTP traffic, which is served without HTTPS protection.

3) Shared browsers: Finally, the outlined insecurity can
also be exploited whenever Web browsers are shared by
multiple persons, e.g, in the case of internet cafes or public
computers in hotel lobbies. In such situations, an attacker can
insert his payload into the application’s storage as follows:
First he accesses the Web application using the shared browser.
He navigates the Web application until a state has been reached
in which the application has filled the browser’s Web storage
with the cached code fragments. Then, he executes JavaScript
in the context of the loaded Web application through entering
a javascript:-URL into the browser’s address-bar. This
JavaScript is executed under the origin of the Web application
that is currently displayed in the browser window, i.e., the
targeted application. In consequence, the script has full access
to the site’s Web storage, allowing the attacker to insert his
payload.

From this point on, every further user that accesses the
Web application using this particular browser will involuntarily
execute the attacker-controlled script. Unlike other ’internet
cafe’-attack scenarios, which usually rely on malware running
on the computer which executes the affected browser, in
this case the attacker does not need elevated privileges or
additionally installed software, making it a low effort and hard
to detect attack.

C. Analysis

All three discussed attack scenarios have a common charac-
teristic: JavaScript, executed in the victim’s browser, manip-
ulates the code fragments, which are held in the LocalStor-
age. This action in done purely on the client-side, without
any involvement of the server-side component of the Web
application. Hence, the capabilities of a Web site’s developer
or operator are severely limited, when it comes to detecting
such malicious activities: Both the manipulation as well as
the subsequent usage of the code fragments never leave the
browser.

IV. SURVEY

A. Research questions

In order to investigate the usage of Web Storage in the wild,
we conducted a large-scale study. Thereby we were mainly
interested in the following research questions:

1) Penetration:
(RQ1) How many Web sites utilize Web Storage?
(RQ2) What kinds of storage types are used(Local-, Session-

or GlobalStorage)?



4

(RQ3) Does a relation exist between the popularity of a Web
site and the usage of Web Storage?

2) Security:
(RQ4) How many Web sites utilize Web Storage for storing

code fragments?
(RQ5) How many Web Sites utilize Web Storage in a Se-

cure/Insecure fashion?

B. Survey methodology

In order to answer the presented research questions we
crawled the front-pages of the Alexa top 500,000 Web sites
and examined the obtained data with the open source Web
testing framework HTMLUnit1. To do so, we augmented
HTMLUnit’s native Storage objects in such a way that any
access to Local-, Session-, or GlobalStorage is logged during
the analysis.

One particularly difficult problem was the detection of
insecure usage. Hereby, we came to the conclusion, that storing
any content within Web Storage that leads to uncontrolled
code execution is dangerous. Therefore, we established the
following classification for stored values:

1) Problematic: Problematic data is very likely executed in
an uncontrolled fashion. Such data consists of Javascript
fragments, CSS style declarations or HTML source code.

2) Suspicious: Suspicious content could potentially be exe-
cuted. One example for this category is JSON data. JSON
can either be parsed in a secure fashion by using secure
parsers like JSON.parse() or simply by executing it via
eval(). While the former is quite secure, the latter could
be misused by an adversary to execute Javascript code
other than JSON.

3) Unproblematic: Content that seems to be unlikely to
trigger an uncontrolled code execution. Examples for
this category are numbers, alphanumeric strings or empty
values.

In order to categories the observed values we utilized a half-
automatic approach. First we only selected the values from
our dataset that contained either angle (”<”, ”>”) or curved
brackets (”{”,”}”) as code fragments are very dependent on
these characters. Everything else was marked unproblematic.
Then we manually categorized the remaining values according
to our classification.

C. Results

In this section, we present the results of our survey and
discuss these results in the context of the identified research
questions.

a) Penetration: In the first part of our evaluation we are
interested in the general usage of the Web Storage APIs. On
the investigated 500,000 Web sites we recorded more than
122,615 calls (by 20,421 Web sites) to Web Storage directives.
The biggest part of 82,884 targeted at LocalStorage, while
about 39,068 targeted at SessionStorage and still 663 made
use of the deprecated GlobalStorage. For more details on the
general crawling results, please refer to Table I.

1HTMLUnit, version 2.9, http://htmlunit.sourceforge.net/

Name Total Web sites % Sites
Crawled Pages 500,000 500,000 100 %
Total Web Storage Accesses 122,615 20,421 4.08 %
LocalStorage Accesses 82,884 18,811 3.76 %
SessionStorage Accesses 39,068 11,288 2.26 %
GlobalStorage Accesses 663 202 0,04 %
via getItem() 81,811 19,890 3,98 %
via setItem() 35,823 16,169 3,23 %
via removeItem() 4,981 2385 0,48 %

TABLE I: General overview of crawling results

Another fact that we were interested in was the relation
between the usage of Web Storage and the popularity of a
Web site. Figure 1 shows the relation between Alexa Rank
and the usage of Web Storage aggregated to a level of 10,000
sites. The diagram clearly shows that popular Web sites are
more likely utilizing Web Storage than not so popular ones.

0	  

200	  

400	  

600	  

800	  

1000	  

1200	  

0	   50000	   100000	   150000	   200000	   250000	   300000	   350000	   400000	   450000	  

U
sa
ge
	  p
er
	  1
0,
00
0	  
Si
te
s	  

Alexa	  Rank	  

Usage	  of	  Web	  Storage	  

Fig. 1: Usage of Web Storage related to Alexa Rank

b) Security: Besides investigating the pure usage of Web
Storage we were also interested in the fact whether Web
Storage is used for code caching in practice and hence used
in a potentially insecure fashion. Therefore, we applied the
methodology described in the previous Section to categorize
the values received during our crawl. From the 122,615 values,
10,547 contained angle or curved brackets. 5055 of these
potential code fragments were empty JSON Objects (”{}”)
and hence categorized as suspicious. The remaining 5492 were
manually inspected and categorized as follows:

• 2084 values stored by 386 Web sites contained Javascript
code, HTML or CSS style declarations.

• 3,340 contained non-empty JSON objects that did not
contain any code fragments (except legitimate JSON
syntax).

During our investigation we found another interesting attack
vector. Within 68 entries we found URLs pointing to CSS
or Javascript files. By manually inspecting the corresponding
Web sites, we found out that these URLs were used to request
additional resources via script tags and CSS style declarations.
If an adversary is thus able to manipulate these URLs, he
can force a Web site to load an attacker controlled script file
instead of the legitimate one. In this way the attacker can inject



5

code into a Web site via Web Storage despite the fact that the
stored content is not evaluated (via eval, etc) directly by the
Web site.

Given the numbers above we categorized the values as
follows:

1) Problematic: 2,084 Storage entries with code + 68 stored
URLs pointing to Javascript or CSS files = 2,152

2) Suspicious; 3,340 non-empty JSON objects + 5,055
empty JSON objects = 8,305

3) Unproblematic: 112,158 apparently safe entries

V. COUNTERMEASURE

Based on the results of our survey, it can be observed that
indeed Web storage is utilized frequently to locally store code
fragments, probably for caching and responsiveness reasons.
Furthermore, the number of observed cases suggests that this
technique has proven its merit in practice, and hence, will very
likely be continued being in use.

In consequence, we designed a lightweight technique that
allows Web developers to use this technique in a secure
fashion. Our approach centers around verifying the integrity of
a value stored within Web Storage before it is injected in the
Web pages DOM. This way, a Web application is able to detect
whether cached content was manipulated without loosing the
benefits of caching.

A. Description of the technique

As opposed to other types of user input, we cannot apply
well-known and proven anti-XSS techniques to secure cached
Code. Input validation or output encoding would prevent
legitimate code from executing and differentiating between le-
gitimate and malicious code is a very hard problem. Therefore,
our system relies on integrity checks to validate the legitimacy
of stored content. Whenever our system receives a value
from Web Storage it calculates a cryptographic checksum and
verifies whether the contained code was received from the
server before or if it was manipulated/stored by an adversary.

In order to do so, the server calculates and stores a check-
sum whenever it creates a new piece of code that is supposed
to be cached within Web Storage. At each request to a resource
that reuses cached code, the server includes the checksum into
the response. A client-side script then calculates the checksum
of the content received from Web Storage and compares it to
the checksum received from the server. Only if the two values
match, the code is still legit.

B. Implementation

Our implementation consists of a lightweight JavaScript
library that transparently handles caching and integrity vali-
dation for the application. As a first step, the library utilizes
function wrapping techniques [13] to overwrite the native
Storage objects (See listing 3 for an example with LocalStor-
age). The wrapper implements the same API and hence can
be used by the application as if it was the original storage
object. Furthermore, the wrapper holds a list of keys that are
supposed to be used for code caching and the checksums for
the corresponding code fragments.

Listing 3 Wrapping LocalStorage with a custom wrapper

<script>
var wrapper = new StorageWrapper();
Object.defineProperty(window, "localStorage",

{value: wrapper});
</script>

Whenever the application requests an entry with a key from
the list, the wrapper calculates the checksum of the entry and
compares it to the checksum received from the server. If the
two checksums match the data is passed on to the application.
If the checksums do not match our script contacts the server
via XMLHttpRequest and requests a new version of the cached
code that is then stored within the storage and handed over to
the application.

For keys that are not available within the list received from
the server, our library automatically applies output encoding
before handing the value to the application. As the server
did not explicitly express its will to store code within this
key-value pair (i.e. the server did not deliver a checksum),
this seems an appropriate action. Therewith, caching becomes
fully transparent to the application and at the same time we
offer a secure Web Storage by default. For cases, were the
server explicitly wishes to store code that should not be output
encoded, we offer a mechanism to opt-out this feature for
certain Storage keys. (See Figure 2 for a more detailed view)

GetItem(key)	  

isForCodeCaching
(key)	  

Apply	  Output	  
Encoding	  	  

No	  

Return	  Value	  

Yes	  

hasValidChecksum
(key)	  

Yes	  
Fetch	  new	  version	  

Update	  Storage	  

No	  

Encode(key)	  
==	  true	  

Yes	   No	  

Fig. 2: Flowchart of our countermeasure

C. Security evaluation

In this Section we discuss how our approach defends against
the scenarios presented in Section III.



6

1) Cross-site Scripting: In the cross-site scripting scenario,
we assume that an attacker is able to misuse a XSS
vulnerability, while the user is not authenticated to the
Web application. Thereby, he inserts his payload into the
LocalStorage. At a later point in time, the user authen-
ticates himself to the application and thus is now able
to see private information or to trigger security sensitive
actions. Now the code is fetched and executed by the
Web application from LocalStorage. With our protection
mechanism in place the code manipulation is detected
between fetching and execution. Instead of executing the
attacker’s payload, a new version of the code received
from the server is used to proceed.

2) Shared browsers: For this scenario we assumed that
an attacker has access to the browser, before a victim
actually uses it. The attacker injects his payload into the
LocalStorage of the Web site to be attacked. Later, when
the user enters the same site again, the page loads the
cached code, i.e. the attackers payload, and executes it.
If the page is equipped with our library, the server sends
back the checksum of the cached code when the victim
enters the Web site. The LocalStorage wrapper calculates
the checksum of the adversary’s payload and detects
that it is different from the one received by the server.
Consequently, a new version of the script is requested
from the server and written back to the LocalStorage
overwriting the attacker’s code.

3) Untrustworthy networks: Similar to the Internet cafe
scenario, our library is able to detect that the values within
LocalStorage were manipulated when the user enters
the attacked Web application over a trusted network.
Therefore, the library again fetches a new version of the
code, effectively rendering the attack void.

As seen above, our Library is able to reliably detect and de-
fend against all the presented scenarios and thus significantly
raising the bar for Web Storage-based attacks

D. Functional evaluation

In this Section we seek to evaluate the practical impact of
our countermeasure. Code caching is used to reduce response
times of Web applications, especially in mobile scenarios
where bandwidth and latency matters. As our solution requires
checksums to be sent to the client and additional verification
steps to be taken during runtime, our solution could possibly
affect response times in a negative fashion. Therefore, we
conducted some performance measurements to prove the ap-
plicability of our solution. First we investigated the additional
overhead of sending checksums over the wire and secondly
we benchmarked checksum calculation on the client-side.

In order to offer a robust and reliable defense technique
checksums have to be calculated using collision free hash
algorithms. Therefore we choose SHA256 for hashing cached
code. As the name SHA256 suggests the utilized hashes are
256 bits long. Therefore, code fragments protected by our
technique should not be smaller than this size plus the size
of our library, otherwise our solution would cause overhead
as the hashes and verification methods have to be sent to the

client at each request. Our library (including one hash) is 563
bytes long plus additional 1731 bytes for the hashing library.
As soon as the Javascript crypto API is generally available
within browsers we can get rid of the additional 1731 bytes
for the hashing library.

In order to prove the applicability of our approach we
examined the 2084 code fragments, which we collected during
our survey. In average those code fragments were about
76,000 bytes large. Given the 2,294 bytes for our libraries,
the advantage of code caching is still clearly perceivable and
as sites often store multiple fragments, the overhead becomes
even smaller. For fragments that are smaller than our library
we discourage Web Storage-based caching.

Another bottleneck could be the performance of the hashing
algorithm. In order to assess the runtimes, we conducted sev-
eral tests on different browser’s for the 2084 values discussed
before2. The worst performance was observed for Opera, while
Firefox, Safari and Chrome offered a much better performance.
As seen in table II the performance overhead implied by our
solution is almost neglectable.

Browser Total time in ms Average
Firefox 55,790 0,026 s
Safari 51,284 0,024 s
Chrome 55,087 0,026 s
Opera 180,372 0,086,s

TABLE II: Browser Performance for 2084 values

During validation we noticed one further advantage of our
library. When updating code pieces, servers cannot automat-
ically enforce an update of the cached version within the
user’s browser. Therefore, the Web application either has to
reset code fragments within Web Storage from time to time
or it has to wait days or perhaps even weeks until the user
triggers a manual deletion (for example by clearing personal
browsing data). Our approach offers a very lightweight update
functionality for client-side caches. The server simply needs
to change the checksums it returns to the client. When the
user requests the cached version again, the checksum of the
cached code and the checksum received from the server will
differ and hence our script will trigger an update.

E. Limitations

Our technique is capable to robustly handle values, which
originated on the server-side. For such values, the Web server
can calculate the integrity checksums before sending the code
to the Web storage. However, dynamic values, which are cre-
ated on the client-side as part of the user/browser interaction,
cannot be integrity protected (e.g., as part of temporary value
storage method for offline-mode Web applications): As these
values are generated within the browser, the server has no
reliable indicators of the values initial integrity. On the server-
side it cannot be decided whether these values were generated
through legitimate user interaction or were set through attacker
controlled JavaScript. Therefore, such values necessarily have
to be regarded as potentially untrusted and should be subject

2We utilized the Stanford Crypto Library for our tests



7

to output sanitization before they are included in the site’s
DOM. In order to offer protection by default, our approach
automatically applies output validation to any values for which
the server did not provide a checksum.

F. Outlook

As the outcome of Section IV’s survey suggest, there is a
demand for application controlled caching capabilities. There-
fore, in the long run, it should be investigated how to introduce
fine-grained, integrity-protecting caching mechanisms to the
browsers in the form of native features.

VI. RELATED WORK

A. Security and privacy aspect of Web storage

The first public documentation of insecurely using Web
storage has been given in [4]. The authors have evaluated
eleven selected Web application which use Web storage and
found seven of them vulnerable, due using insufficient san-
itized data values. In consequence, the paper proposes to
solve the problem with mandatory output sanitization of all
values which were retrieved from Web storage. While such an
approach would successfully mitigate the discussed attacks,
it renders the caching of fragments that contain code or
markup impossible. In contrast, our technique allows this
usage pattern.

Furthermore, [7] explores the potential exploitation sce-
narios in depth, which result when an attacker was able to
successfully persist his payload into the browser’s storage
facilities.

Finally, it has been shown, that Web storage can be used
to create persistent user tracking mechanisms, which under-
mine the user’s privacy. For instance, Web storage is one
of the techniques used in Evercookie [8], a proof-of-concept
implementation of an intentionally hard to purge user-tracking
marker that can be set in a user’s browser.

B. Security issues with HTML5/JavaScript APIs

In the recent years further new JavaScript capabilities have
been added to modern Web browser besides the Web storage
APIs. For several of these new capabilities, potential vulner-
abilities or insecure usage scenarios have been identified. In
the remainder of this section, we list selected cases.

For one, the introduction of Cross-origin Resource Sharing
(CORS) [18] added cross-domain capabilities to the XML-
HttpRequest (XHR) object. This modified characteristic of the
XHR object has invalidated the (previously correct) assump-
tion that data retrieved through this object is implicitly trust-
worthy, as it was mandatorily retrieved from a Web location
that satisfies the same-origin policy. Hence, in situations in
which an attacker can control the URL that is used to request
content via XHR, he can instruct the application to retrieve the
data from his server for which he can allow the cross-domain
access. This, in consequence, can lead to XSS issues if the data
ends up being included in the site’s DOM [11]. In addition,
it has been shown, that due to the new capabilities the XHR
object can be utilized for CSRF attacks which involve file

upload mechanics, an attack that was previously only possible
with the help of Flash [10].

Furthermore, [1] and [4] have shown that the postMessage
API [16] can be used insecurely, if a JavaScript that accepts
postMessage-events does not verifies the origin of the incom-
ing data carefully.

Finally, in [6] unexpected side effects of the initial imple-
mentation of the Web Sockets API have been identified, that
can occur in situations in which transparent Web proxies are
part of the HTTP communication.

VII. CONCLUSION

In this paper, we proposed a lightweight integrity preserving
mechanism that mitigates malicious manipulation of code
fragments that were persisted in a browser’s Web storage.
To substantiate the demand for such a solution, we explored
potential attack scenarios and conducted a large-scale survey
on the current practice of Web storage usage. Our approach
robustly mitigates all identified attack methods, while main-
taing all required functional aspects. No browser modifications
are needed as our technique can be implemented purely in
JavaScript. It works transparently using API wrappers and
introduces only negligible performance overhead. Our ap-
proach provides excellent protection abilities and, thus, enables
developers to avoid the inherently insecure current practice, as
long as browsers do not provide native capabilities for integrity
preserving Web storage.

VIII. ACKNOWLEDGMENT

This work was in parts supported by the EU Project Web-
Sand (FP7-256964), http://www.websand.eu. The support is
gratefully acknowledged.

REFERENCES

[1] Adam Barth, Collin Jackson, and John C. Mitchel. Se-
curing Frame Communication in Browsers. In USENIX
Security, page 1730, 2008.

[2] Eric Bidelman. A beginners guide to using the appli-
cation cache. [online], http://www.html5rocks.com/en/
tutorials/appcache/beginner/, last accessed 02/29/2012,
June 2010.

[3] Philippe De Ryck, Lieven Desmet, Pieter Philippaerts,
and Frank Piessens. A security analysis of next genera-
tion web standards. Technical report, European Network
and Information Security Agency (ENISA), July 2011.

[4] Steve Hanna, Eui Chul, Richard Shin, Devdatta Akhawe,
Arman Boehm, Prateek Saxena, and Dawn Song. The
emperor’s new apis: On the (in) secure usage of new
client-side primitives. In Web 2.0 Security and Privacy
(W2SP 2010), 2010.

[5] Ian Hickson. Web storage. Available online: http://www.
w3.org/TR/webstorage/, December 2011.

[6] Lin-shung Huang, Eric Y Chen, Adam Barth, Eric
Rescorla, and Collin Jackson. Talking to yourself for
fun and profit. In Proceedings of W2SP, 2011.



8

[7] Artur Janc. 28c3: Rootkits in your Web application. Talk
at the 28C3 conference, http://events.ccc.de/congress/
2011/Fahrplan/events/4811.en.html, December 2011.

[8] Samy Kamkar. Evercookie. [online], http://samy.pl/
evercookie/, last accessed 02/29/2012, October 2010.

[9] Burak Yigit Kaya. Dom storage. Available online: https:
//developer.mozilla.org/en/DOM/Storage#globalStorage,
Oktober 2011.

[10] Krzysztof Kotowicz. Invisible arbitrary CSRF file up-
load in Flickr.com. [online], http://blog.kotowicz.net/
2011/05/invisible-arbitrary-csrf-file-upload-in.html, last
accessed 03/01/2012.

[11] Lavakumar Kuppan. Attacking with HTML5.
Talk at the Black Hat Abu Dhabi Conference,
https://media.blackhat.com/bh-ad-10/Kuppan/
Blackhat-AD-2010-Kuppan-Attacking-with-HTML5-slides.
pdf, October 2010.

[12] Lavakumar Kuppan. Chrome and safari
users open to stealth html5 appcache attack.
Available online: http://blog.andlabs.org/2010/06/
chrome-and-safari-users-open-to-stealth.html, June
2010.

[13] Jonas Magazinius, Phu H. Phung, and David Sands. Safe
wrappers and sane policies for self-protecting JavaScript.
In Tuomas Aura, editor, The 15th Nordic Conference
in Secure IT Systems, LNCS. Springer Verlag, October
2010. (Selected papers from AppSec 2010).

[14] Mozilla Developer Network. IndexedDB. [on-
line], https://developer.mozilla.org/en/IndexedDB, last
accessed 02/29/2012, Feburary 2012.

[15] Robert Nyman. Saving images and files in lo-
calStorage. [online], http://hacks.mozilla.org/2012/02/
saving-images-and-files-in-localstorage/, last accessed
02/29/2012, February 2012.

[16] Eric Shepherd. window.postmessage. [online], https:
//developer.mozilla.org/en/DOM/window.postMessage,
last accessed 02/12/12, October 2011.

[17] Steve Souders. App cache & localstorage survey. Avail-
able online: http://www.stevesouders.com/blog/2011/09/
26/app-cache-localstorage-survey/, September 2011.

[18] Anne van Kesteren (Editor). Cross-Origin Resource
Sharing. W3C Working Draft, Version WD-cors-
20100727, http://www.w3.org/TR/cors/, July 2010.


