25 Million Flows Later - Large-scale Detection of
DOM-based XSS

Sebastian Lekies
~ SAPAG
sebastian.lekies@sap.com

Abstract

In recent years, the Web witnessed a move towards sophis-
ticated client-side functionality. This shift caused a signifi-
cant increase in complexity of deployed JavaScript code and
thus, a proportional growth in potential client-side vulnera-
bilities, with DOM-based Cross-site Scripting being a high
impact representative of such security issues. In this paper,
we present a fully automated system to detect and validate
DOM-based XSS vulnerabilities, consisting of a taint-aware
JavaScript engine and corresponding DOM implementation
as well as a context-sensitive exploit generation approach.
Using these components, we conducted a large-scale analy-
sis of the Alexa top 5000. In this study, we identified 6167
unique vulnerabilities distributed over 480 domains, show-
ing that 9,6% of the examined sites carry at least one DOM-
based XSS problem.

Categories and Subject Descriptors

H.4.3 [Communications Applications]: Information
browsers; H.6.5 [Security and Protection]: Unauthorized
access

Keywords

DOM-based XSS, Taint Tracking, Vulnerability Detection,
Exploit Generation

1. INTRODUCTION

The times in which JavaScript was mainly used for eye
candy and small site enhancements are long gone. Since
the advent of the so-called Web 2.0, the Web browser is the
host of sophisticated, complex applications, such as Gmail or
Google Docs, written entirely in JavaScript, that rival their
desktop equivalents in scope and features. More and more
functionality, which in traditional Web applications would
have been implemented on the server, moves to the client.
Consequently, the amount of required JavaScript code is in-
creasing proportionally to this shift. Furthermore, the capa-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 4-8, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516703.

Ben Stock
FAU Erlangen-Nuremberg

ben.stock@cs.fau.de

Martin Johns
~ _SAPAG
martin.johns@sap.com

bilities of client-side JavaScript are continuously increasing,
due to the steady stream of new “HTML5” APIs being added
to the Web browsers.

In parallel to this ever growing complexity of the Web’s
client side, one can observe an increasing number of security
problems that manifest themselves only on the client [26,
11, 17]. One of these purely client-side security problems
is DOM-based XSS [16], a vulnerability class subsuming all
Cross-site Scripting problems that are caused by insecure
handling of untrusted data through JavaScript. DOM-based
XSS is caused by unsafe data flows from attacker-controlled
sources, such as the document.location property, into se-
curity sensitive APIs, e.g., document .write.

While the existence of DOM-based XSS is known since
2005 [16], this vulnerability class is frequently still perceived
as a minor, fringe issue, especially when being compared to
reflected and persistent XSS. In this paper, we re-evaluate
this assumption and examine how prevalent DOM-based
XSS is in the wild.

Unfortunately, testing of client-side security properties in
general, and DOM-based XSS in particular, is difficult. In
comparison to the conditions on the server side, the Web’s
client side has several challenges that affect both static and
dynamic security testing approaches: For one, all server-side
code is completely under the control of the application’s op-
erator and available for processing, monitoring and analysis.
This is not the case at the Web’s client-side, where the code
execution occurs on the user’s machine. Furthermore, com-
pared to server-side languages such as Java or C+#, a large
portion of JavaScript code frequently relies on runtime inter-
pretation of string data as executeable code via APIs such
as eval(). The resulting code is interpreted and executed
on the client, making it invisible to the server. Finally, it
is common practice for modern Web applications to include
third-party JavaScript code using script-tags that point to
cross-domain hosts. In 2002, Nikiforakis et al. [22] measured
that 88.45% of the Alexa top 10,000 web sites included at
least one remote JavaScript resource from a cross-domain
host. This JavaScript is transported directly from the third-
party provider to the user’s Web browser and gets executed
immediately. Thus, this code is neither directly controlled
by the application nor is it visible at the server.

In this paper, we propose a fully automated system to
identify DOM-based XSS issues, that overcomes the outlined
obstacles through integrating the vulnerability detection di-
rectly into the browser’s execution environment. Our system
consists of a taint-aware JavaScript engine and DOM imple-

mentation as well as a context-sensitive exploit generation
technique.
The main contributions of this paper are the following:

e We present the design and implementation of a dy-
namic, byte-level taint-tracking approach in JavaScript
engines. Through directly altering the JavaScript en-
gine’s implementation of the low-level string type, we
achieve complete coverage of all JavaScript language
features and the full DOM API.

e We propose a novel, fully automatic vulnerability vali-
dation mechanism, that leverages the fine-grained con-
text information provided by our taint-aware Java-
Script engine. Due to our exact knowledge of data
source and syntactical context of the final data sink,
our system can create attack payloads that match the
syntactic surroundings of the injection point. This
in turn allows unambiguous vulnerability validation
through verification that our injected JavaScript was
indeed executed. Thus, our system reports no false
positives.

e We report on a large-scale empirical study on insecure
data flows in client-side JavaScript and the resulting
DOM-based XSS vulnerabilities. In total, we exam-
ined 504,275 URLSs resulting from a shallow crawl of
the Alexa top 5000 sites. In this study we observed
a total of 24,474,306 flows out of which 69,987 caused
validated DOM-based XSS exploits, resulting in 6,167
unique vulnerabilities affecting 9,6% of the examined
sites.

The remainder of this paper is organized as follows: First
we briefly revisit the technical background of DOM-based
XSS (Sec. 2) and give a high-level overview of our approach
(Sec. 3). Then, we describe our techniques for vulnerability
detection (Sec. 4) and validation (Sec. 5). In Section 6 we
present the methodology and results of our empirical study.
We end the paper with a discussion of related work (Sec. 7)
and a conclusion (Sec. 8).

2. DOM-BASED XSS

Cross-Site Scripting is an attack in which an attacker is
able to inject his own JavaScript code into a Web appli-
cation, in such a way that the code is executed within a
victim’s browser in the context of the application. Since
2000, when one of the first XSS vulnerabilities was reported
[3], novel attack variants were discovered. In 2005, Amit
Klein published a paper in which he first mentioned the
term DOM-based XSS and described the basic character-
istics of this vulnerability [16]. In contrast to traditional
(reflected and persistent) Cross-Site Scripting, DOM-based
XSS is caused by incorrect client-side code rather than by
server-side code. As described earlier, the dynamic nature
of this client-side code makes it hard to detect or verify this
kind of vulnerability.

In order to trigger a DOM-based XSS exploit an attacker
is able to utilize a multitude of different attack vectors to
inject his malicious payload (such as location.href, docu-
ment.referrer, window.name, and many, many more). De-
pending on the Web application’s program logic, it processes
attacker-controllable inputs and at some point in time con-
ducts a string-to-code conversion. As shown in our empirical

study, this is a very common scenario. If input is not san-
itized correctly, the attacker may be able to inject his own
code into the application. Thereby, different subtypes of
DOM-based XSS exist depending on the method used for
converting the string to code:

HTML context.

Web applications commonly insert generated HTML code
into the DOM via functions such as document.write, in-
nerHTML or insertAdjacentHTML. When these functions are
called, the browser parses the string parameter and inter-
prets the contents as HTML code, which is then inserted
into a certain position within the DOM. If user input flows
into these sinks, sanitization or encoding functions have to
be used in order to avoid code injection vulnerabilities. If
the input is not sanitized correctly an attacker is able to
inject own HTML tags including <script>, which enables
JavaScript execution. For the specific differences between
innerHTML and document.write, we refer the reader to Sec.
5.2.1.

JavaScript context.

Another commonly used method, which is sometimes vul-
nerable to DOM-based XSS, is the eval function. eval takes
a string parameter, interprets it as JavaScript code and ex-
ecutes it. Besides eval and its aliases setTimeout and set-
Interval, there are also other contexts in which strings are
converted into JavaScript code such as script.innerText,
script.text, script.textContent and the assignment of
strings to event handler attributes.

URL context.

If an attacker-controlled input flows into a URL attribute
of any DOM node (such as img.src, iframe.src, object.
data or a.href), an immediate conversion from a string to
code does not occur. However, there are still several security
problems related to this kind of flows. For example, if the
attacker is able to control the complete URL, he could make
use of the javascript: or data: schemes to execute script
code. If only parts of the URL are controlled, the attacker
could still conduct redirects or phishing and in some cases
even achieve JavaScript code execution as shown in Section
6.5.1.

Other contexts.

Besides those contexts that allow code execution, there
are further sinks/contexts that are security sensitive such
as document . cookie, the Web Storage API, postMessage or
setAttribute. In Section 6.5.3, for example, we present
a persistent DOM-based XSS vulnerability via document.
cookie, which was discovered by our framework.

3. APPROACH OVERVIEW

In this paper, we propose a system to automatically de-
tect and validate DOM-based XSS vulnerabilities. To ad-
dress the outlined challenges in the assessment of client-side
security problems (see Sec. 1), we decided to address the
problem as follows: Instead of building analytical processes
that complement [29] or emulate [25] the client-side behav-
ior, we chose to integrate our techniques directly into a full
browser.

More precisely, our system consists of two separate com-
ponents: For vulnerability detection, we utilize a modified
browsing engine that supports dynamic, byte-level taint-
tracking of suspicious flows. Through directly altering the
engine’s string type implementation, we achieve complete
coverage of all JavaScript language features and the full
DOM API. We discuss the design and implementation in
Section 4.

The second component is a fully automated vulnerability
validation mechanism, that leverages the fine-grained con-
text information provided by our taint-aware browsing en-
gine. Due to the exact knowledge of data source and syn-
tactical context of the final data sink, our system is able to
create attack payloads that match the syntactic surround-
ings of the injection point. This in turn allows unambigu-
ous vulnerability validation through verification that our in-
jected JavaScript was indeed executed. This component is
presented in Section 5.

4. VULNERABILITY DETECTION: MOD-
IFIED CHROME

To automatically detect the flow of potentially attacker-
controllable input (called a source) into a sink in the sense of
DOM-based XSS, we decided to implement a dynamic taint-
tracking approach. To ensure that edge-cases, which might
not be implemented properly into pure testing engines like
HTMLUnit, were to be properly executed, we chose to im-
plement taint-tracking into a real browser. For this, we mod-
ified the open-source browser Chromium in such a manner
that its JavaScript engine V8 as well as the DOM implemen-
tation in WebKit were enhanced with taint-tracking capabil-
ities. For both components of the browser, we selected to use
a byte-wise taint-tracking approach built directly into the re-
spective string representations. In this fashion, we enabled
our tool to not only distinguish between a completely un-
tainted string and a string containing any potentially harm-
ful content, but also to specifically get information on the
origin of each given character in said string.

4.1 Labeling sources and encoding functions

To keep the memory overhead as small as possible, we
chose to implement our approach in such a way, that in-
formation on a given character’s source is encoded in just
one byte. We therefore assigned a numerical identifier to
each of the 14 identified sources (e.g. location.href, lo-
cation.hash or document.referrer). Hence, we were able
to encode this information into the lower half of the byte.
To also be able to determine whether a given character was
encoded using the built-in functions encode URI, encode URI-
Component and escape, we used the lower three of the four
remaining bits to store whether one or more of these func-
tions were applied to the string. To represent a benign char-
acter, the lower four bits are set to 0.

4.2 Patching the V8 JavaScript engine

Google’s JavaScript engine V8 is highly optimized in re-
gards to both memory allocation and execution speed. Al-
though the code is written in C++, V8 for the most parts
does not make use of a class-concept using member variables
when representing JavaScript objects like strings or arrays.
Instead, a small header is used and objects components are
addressed by only using given offsets relative to the object’s
address.

After careful examination of the given code, we chose to
only encode the desired information directly into the header.
Every object in V8 stores a pointer to its map. The map
describes the class of an object. In V8, there are maps for
each type of object. We found an used part of a bitmap in
the maps and used it to create new map objects for tainted
strings. Obviously, for strings of dynamic length, additional
memory must be allocated to store the actual data. Based
on whether a string is pure ASCII or also contains two-byte
characters, this memory is allocated on creation of the ob-
ject. The address of this newly created space is then writ-
ten to one of the aforementioned offsets in the header. Along
with the information that a string is tainted, we also need to
store the taint bytes described above. To do this, we changed
the string implementation such that additional length bytes
are allocated. Since we wanted to keep the changes to ex-
isting code as small as possible, we chose to store the taint
bytes into the last part of the allocated memory. This way,
the functionality for normal access to a string’s characters
did not have to be changed and only functionality for taint
information access had to be added.

As mentioned before, the V8 engine is optimized for per-
formance. It therefore employs so-called generated code
which is assembler code directly created from macros. This
way, simple operations such as string allocation can be done
without using the more complex runtime code written in
C++. However, for our approach to easily integrate into
the existing code, we chose to disable the optimizations for
all string operations such as creation or sub-string access.

After patching the string implementation itself, we also
instrumented the string propagation function such as sub-
string, concat, charAt, etc. This is necessary to ensure
that the byte-wise taint-tracking information is also propa-
gated during string conversions.

4.3 Patching the WebKit DOM implementa-
tion

In contrast to the V8 engine, WebKit makes frequent use
of the concept of member variables for its classes. Therefore,
to allow for the detection of a tainted string, we were able
to add such a member denoting whether a string is tainted
or not. The string implementation of WebKit uses an array
to store the character data. Hence, we added a second array
to hold our taint bytes. Since strings coming from V8 are
converted before being written into the DOM, we patched
the corresponding functions to allow the propagation of the
taint information. This is necessary because tainted data
might be temporarily stored in the DOM before flowing to
a sink, e.g. by setting the href attribute of an anchor and
later using this in a document.write. To allow for correct
propagation of the taint information, we not only needed
to change the string implementation but also modify the
HTML tokenizer. When HTML content is set via JavaScript
(e.g. using innerHTML), it is not just stored as a string but
rather parsed and split up into its tree structure. Since we
want to ensure that taint information is carried into the tag
names and attributes in the generated tree, these changes
were also necessary.

4.4 Detection of sink access

Until now we discussed the tracking of tainted data inside
the V8 JavaScript engine and WebKit. The next step in our
implementation was to detect a tainted flow and to notify

| Extension
T A
l
V8JS I eval | report
!_ - : A
WebKit I document.write

Figure 1: Report functionality

the user. Therefore, we modified all DOM-based Cross-Site
Scripting sinks — like document.write, innerHTML or eval.
We changed them in such a way that a reporting function is
called each time a tainted string is passed to such a sink. In
order to pass on the report to the user interface, we imple-
mented a Chrome extension, that injects the JavaScript re-
porting function into the DOM. As such a function is callable
from inside the runtime engine, we are able to report the flow
to the extension. The details on the layout and implemen-
tation of this extension are presented in 6.1.

In WebKit’s API used to provide access to the DOM tree
for V8, the passed arguments are of V8’s string class and are
then converted to WebKit’s string type. Hence, we chose
to implement our reporting function into V8’s string class,
therefore allowing us to invoke it from the DOM API as
well as directly from V8 using the provided string reference.
When called, this function gathers information on the code
location of the currently executed instruction and reports
these alongside the taint information and details on the type
of sink to the extension.

Figure 1 depicts this layout. Both the indicated functions
eval and document.write use the reference to the passed
string to invoke the reporting function which in turn passes
on the information to the Chrome extension shown at the
top.

S. VULNERABILITY VERIFICATION: AU-
TOMATIC EXPLOIT GENERATION

Although the taint-tracking engine delivers first indica-
tions for potential Cross-Site Scripting vulnerabilities, de-
tecting a flow alone is not sufficient to ensure that a vulner-
ability was discovered. There are various reasons why a suc-
cessful exploitation is not possible for an existing flow. For
example, the Web site could use built-in or custom encoding
or filter functions that are capable of defusing a malicious
payload. Furthermore, other, random circumstance can oc-
cur that prevent an exploit from executing. For example, if
the tainted value originates from a GET parameter, tamper-
ing with this parameter could trigger the Web server to load
a different page or to display an error message in which the
vulnerable flow is not present anymore. Therefore, a verifi-
cation step is needed to tell vulnerable data flows apart from
non-exploitable flows. In order to do so our system uses the
data received from the taint- tracking engine to reliable gen-
erate valid Cross-Site Scripting Exploits. In this Section we
describe the inner workings of the generation process.

5.1 Anatomy of a Cross-Site Scripting Exploit

To develop a system that is capable of generating valid
XSS payloads, we first analyzed the nature of a Cross-Site
Scripting exploit. In general, an exploit is context depen-
dent. This means, that a payload, which an attacker seeks
to execute, depends on how the Web application processes
the attacker’s input. So, if the input flows into the eval
sink it has to utilize a different syntax than an exploit tar-
geting flows into document.write (More details on context-
dependent exploit generation can be found in the Section
5.2). However, the structure of an exploit can be general-
ized to a non-context-dependent form.

Listing 1 shows two typical exploits. The first exploit
targets a JavaScript context (e.g. eval), while the second
one contains an exploit for an HTML sink (e.g. docu-
ment.write). In many cases a tainted value was concate-
nated from several different strings, which are hard coded
(benign/non-attacker-controllable) or coming from either one
or more sources (attacker-controllable). Therefore, an at-
tacker is only able to control parts of the string that flows
into the sink. Immediate execution of JavaScript is often
not possible at the location where the tainted/controllable
parts are inserted into the string/code (e.g. within quoted
strings). Therefore, the exploit first has to break out of the
current context to be able to execute the malicious script
code. The first part of each exploit serves as a "break out
sequence” to escape to a context where JavaScript execu-
tion is possible. In the cases presented in Listing 1 these
sequences are);” and ”>", respectively. Following
the break out sequence, an arbitrary JavaScript payload or
<script> tag can be executed. Afterwards, the exploit has
to take care of trailing string fragments in such a way that
these fragments do not interfere with the execution of the
payload. For example, if a string that is passed to eval con-
tains a syntax error, no code will be executed at all, even
if the syntax error occurs at the very end of the string. To
prevent this from happening an exploit has to include an
escape sequence that renders trailing characters harmless.
In the JavaScript case we simply comment out everything
that follows our payload and in the HTML case we close the
script block and include a <textarea> to interpret the rest
of the string as simple text instead of HTML. To summarize
our analysis, we conclude that a Cross-Site Scripting exploit
takes the following generalized form:

exploit := breakOutSequence payload escapeSequence
(1)
In this, only the breakOutSequence and the escapeSequence
are context-specific. While the escapeSequence is very trivial
to choose, the breakOutSequence needs careful crafting to
result in a successful exploit.

Listing 1 Example Cross-Site Scripting exploits

’);alert(’XSS?);//
"><script>alert (’XSS’)</script><textarea>

5.2 Context-Dependent Generation of Break-
out Sequences

After discovering a data flow from one or more sources
to a sink, the taint-tracking engine delivers three pieces of
information to the exploit generation framework:

1. Information on the the data flow (sources, sink, applied
built-in filters)

2. Tainted value: the complete string that flowed into the
sink (including benign and tainted parts from one or
more sources)

3. Byte-wise taint information for each byte contained in
the tainted string.

Based on the given sink the framework first determines
the target context. Depending on this context, the tainted
value and the taint information are passed to a context-
sensitive break out sequence generation function. In the next
step, the generator adds the desired payload and a context-
specific fixed escape sequence. After constructing the ex-
ploit, the system builds a test case that can be executed
in a completely automated fashion and reports back to the
framework in case of successful exploitation.

5.2.1 HTML context-specific generation

An HTML context is present whenever a tainted string
is directly converted into HTML code. This is the case for
many DOM manipulation functions such as document .write
or innerHTML.

As mentioned before, often only parts of a string may be
tainted. Therefore, our system first determines the exact
location of the tainted parts by analyzing the taint informa-
tion. In order to create a valid exploit, the system needs
to determine into which DOM node the tainted parts will
be transformed when the string-to-HTML conversion takes
place. In order to do so, the generator parses the complete
string and identifies the corresponding nodes. Based on the
node types the generator is able to plan the next step within
the generation process. In this first step we distinguish be-
tween three different node types (See Listing 2 for examples):

1. Tainted TagNode: The tainted value is located in-
side an HTML tag. Either it is part of the tag name,
an attribute name, an attribute value or a combination
of those three possibilities.

2. Tainted CommentNode: The tainted value is con-
tained within an HTML comment.

3. Tainted TextNode: The tainted value is placed out-
side of an HTML tag or in between a closing and an
opening tag.

Listing 2 Example Vulnerabilities

document .write(’<script src="//example.org/’
+ taintedValue + ’"></script>’)

document .write(’<div>’ +taintedValue+ ’</div>’)

document .write(’<!--’ +taintedValue+ ’-->’)

Depending on the the node type, break out sequences have
to be generated differently. In the following, we explain the
three different approaches:

TagNode generation.

If the tainted value is included within an HTML tag we
first need to break out of this tag. Otherwise, opening a
<script> tag would have no effect. If the tainted value
is directly located within the tag, we can simple do so by
adding a ”7>” sign to the break out sequence. If the tainted
value resides within an attribute of the tag, the system first
needs to determine the delimiter of the attribute. Most of
the time such attributes are either enclosed by single or dou-
ble quotes, however, sometimes, also no delimiter is present.
So in order to break out of the tag in this case we need
to add the delimiter of the attribute node before the angle
brackets.

Now our payload is able to break out of the current (open-
ing) tag and would be able to open a script tag, to execute
the payload. However, some tags have special semantics for
the text between the opening and the closing tag. So for
example, HTML markup between an opening and closing
iframe tag is only rendered in case iframes are not sup-
ported by the browser. Therefore, our generator optionally
adds one or more additional closing tags at the end of the
break out sequence for all present tags with special seman-
tics. To summarize this, a TagNode break out sequences
looks as follows:

TagNodeBS := [delimiter] > [closingT ags] (2)

CommentNode generation.

The generation of CommentNode break out sequences is
very trivial in most of the cases. As comments in HTML
do not have any special semantics for their content, we can
simply break out of a comment by adding ”- ->” to our break
out sequence. However, such a comment could in rare cases
be placed in between opening and closing tags of scripts,
iframes, etc. So, again our system analyzes the string and
adds closing tags for these elements if necessary. Summing
up, a CommentNode break out sequence takes the following
form:

CommentNodeBS := —— > [closingTags] (3)

TextNode generation.

Every character sequence that is placed outside a tag or
a comment or that is located in between an opening and a
closing tag is regarded as a TextNode by the HT'ML parser.
In many cases executing a payload within a TextNode is
straight forward. As we do not need to break out of the
node itself, we can simply open a script tag and execute
a payload. However, if the TextNode is placed between an
opening and a closing tag of a script or iframe we again
have to add closing tags if necessary.

TextNodeBS := [closingTags] (4)

innerHTML vs document.write.
After we have generated the break out sequence for HTML
context exploits, the system needs to choose a payload to

execute. When doing so, some subtle differences in the han-
dling of string-to-HTML conversion comes into play. When
using innerHTML, outerHTML or adjacentHTML browsers re-
act differently than document.write in terms of script exe-
cution. While document .write inserts script elements into
the DOM and executes them immediately, innerHTML only
performs the first step, but does not execute the script. So
adding the following payload for an innerHTML flow would
not result in a successful exploit:

<script>__reportingFunction__()</script>

However, it is still possible to execute scripts via an injec-
tion through innerHTML. In order to do so, the framework
makes use of event handlers:

<img src="none_existent_resource"
onerror="__reportingFunction__()">

When innerHTML inserts the img tag, the browser creates
an HTTP request to the non-existing resource. Obviously,
this request will fail and trigger the onerror event handler
that executes the given payload. Depending on the sink we
simply choose one of these two payloads.

5.2.2 JavaScript context-specific generation

JavaScript context-specific generation is necessary when-
ever a data flow ends within a sink that interprets a string
as JavaScript code. This is the case for functions such as
eval & Function, Event handlers (such as onload and on-
error) and DOM properties such as script.textContent,
script.text and script.innerText. While browsers are
very forgiving when parsing and executing syntactically in-
correct HTML, they are quite strict when it comes to Java-
Script code execution. If the JavaScript parser encounters a
syntax error, it cancels the script execution for the complete
block/function. Therefore, the big challenge for the exploit
generator is to generate a syntactically correct exploit, that
will not cause the parser to cancel the execution. In order to
do so, the system again has to determine the exact location
of the tainted bytes.

Listing 3 shows a very simple vulnerable piece of Java-
Script code. In the first step, the code constructs a string of
benign/hard coded and tainted (location.href) parts. In a
second step, it executes the code using eval. Thereby, this
code can be exploited in slightly different ways. Either the
attacker could break out of the variable x and inject his code
into the function named test, or he could break out of the
variable x and the function test and inject his code into the
top level JavaScript space. While the first method requires
an additional invocation of the test function, the second ex-
ploit executes as soon as eval is called with a syntactically
correct code. However, for the last case, the complexity of
the break out sequence grows with the complexity of con-
structed code. Nevertheless, we do not want do rely on any
behavior of other non-controllable code or wait for a user in-
teraction to trigger an invocation of the manipulated code.

Therefore, we always seek to break out to the top level
of the JavaScript execution. In order to do so, our system
first parses the JavaScript string and creates a syntax tree
of the code. Based on this tree and the taint information
we extract the branches that contain tainted values. Listing
4 shows the resulting syntax tree for our example code and

Listing 3 JavaScript context example

>function test(){’ +
’var x = "’ + location.href + ’";°’
//inside function test
+ ’doSomething(x);’
+ ’}’; //top level
eval (code)

var code =

Listing 4 JavaScript Syntax Tree

FunctionDeclaration
Identifier : test
FunctionConstructor

Identifier : test
Block
Declaration
Identifier : x

Stringliteral : "http://example.org"

ExpressionStmt
SpecialOperation
Reference
Identifier

FUNCTION_CALL

doSomething

the extracted branch (in gray). For each of the extracted
branches the generator creates one break out sequence by
traversing the branch from top to bottom and adding a fixed
sequence of closing/break out characters for each node. So
in our example the following steps are taken:
1. FunctionDeclaration: ’;’

FunctionConstructor:
Block: '}’
Declaration: ’;’
StringLiteral:
Resulting Breakout Sequence: ";};’

7

2999

IR

To trigger the exploit we can simply construct the test
case as follows: Based on the source (location.href), the
system simple adds the break out sequence, an arbitrary
payload and the escape sequence to the URL of the page:

http://example.org/#";};__reportingFunction__();//

When executed within a browser, the string construction
process from Listing 3 is conducted and the following string
flows into the eval call (Note: Line breaks are only inserted
for readability reasons):

function test (){

var x = "http://example.org/#";
};
__reportingFunction__();
//doSomething (x);}

6. EMPIRICAL STUDY

As mentioned earlier, an important motivation for our
work was to gain insight into the prevalence and nature of
potentially insecure data flows in current JavaScript applica-
tions leading to DOM-based XSS. For this reason, we created
a Web crawling infrastructure capable of automatically ap-
plying our vulnerability detection and validation techniques
to a large set of real-world Web sites.

Browser 1 Browser m

N
| web |
| page |
Los
ouser |
| script |

script |

| script |

content
script

content
script

content
script

content
script

Background script

Il

Background script

!

‘ Control backend

"y

Figure 2: Crawling infrastructure

6.1 Methodology & Architecture Overview

To obtain a realistic picture on the commonness of inse-
cure data flows that might lead to DOM-based XSS, it is
essential to sample a sufficiently large set of real-world Web
sites.

We designed our experiment set-up to meet these require-
ments, utilizing the following components: Our flow-tracking
rendering engine to identify and record potentially unsafe
JavaScripts (as discussed in Sec. 4), our exploit generation
and validation framework (as presented in Sec. 5), and a
crawling infrastructure that automatically causes the brows-
ing engine to visit and examine a large set of URLs.

Our crawling infrastructure consisted of several browser
instances and a central backend, which steered the crawling
process. Each browser was outfitted with an extension that
provided the browser with the required external interface for
communication with the backend (see Fig. 2). In the follow-
ing paragraphs, we briefly document both the backend’s and
the extension’s functionality.

6.1.1 Analysis engine: Central server backend

The main duty of the central analysis backend is to dis-
tribute the URLs of the examination targets to the browser
instances and the processing of the returned information.
The backend maintains a central URL queue, which was
initially populated with the Alexa Top 5000 domains and
subsequently filled with the URLs that were found by the
browsers during the crawling process.

The browser instances transmit their analysis report and
their findings to the backend. For each analyzed URL, anal-
ysis reports for several URLs are returned, as the browser
instances not only check the main page but also all con-
tained iframes. In our study, we received results for an
average of 8.64 (sub-)frames for each URL that was given to
a browser instance. After pre-processing and initial filter-
ing, the backend passes the suspicious flows to the exploit
generation unit (see Sec. 6.3).

6.1.2 Data collection: Browser Extension

As discussed in Section 4, we kept direct changes to the
browser’s core engine as small as possible, to avoid unwanted
side effects and provide maintainability of our modifications.
Our patches to the browser’s internal implementation con-
sisted mainly in adding the taint-tracking capabilities to the
Javascript engine and DOM implementation. All further

browser features that were needed for the crawling and an-
alyzing processes were realized in the form of a browser ex-
tension.

Following the general architecture of Chrome’s extension
model [8], the extension consists of a background and a con-
tent script (see Fig. 2). The background script's purpose
is to request target URLs from the backend, assign these
URLSs to the browser’s tabs (for each browser instance, the
extension opened a predefined number of separate browser
tabs to parallelize the crawling process), and report the find-
ings to the backend. The content script conducts all actions
that directly apply to individual Web documents, such as
collecting the hyperlinks contained in the page for the fur-
ther crawling process and processing the data flow reports
from the taint-tracking engine (see Sec. 4.4). Furthermore,
the content script injects a small userscript into each Web
document, that prevents the examined page from display-
ing modal dialogues, such as alert() or confirm() message
boxes, which could interrupt the unobserved crawling pro-
cess.

After the background script assigns a URL to a tab, the
content script instructs the tab to load the URL and ren-
der the corresponding Web page. This implicitly causes all
further external (script) resources to be retrieved and all
scripts, that are contained in the page, to be executed. Af-
ter the page loading process has finished, a timeout is set to
allow asynchronous loading processes and script execution to
terminate. After the timeout has passed, the content script
packs all suspicious data flows, which were reported during
execution of the analyzed page, and communicates them to
the background script for further processing.

In addition to data flow and hyperlink data, the extension
also collects statistical information in respect to size and
nature of the JavaScripts that are used by the examined
sites.

6.2 Observed Data Flows

As mentioned above, our initial set of URLs consisted of
the Alexa top 5000. For each of these URLs we conducted
a shallow crawl, i.e., all same-domain links found in the re-
spective homepages were followed, resulting in 504,275 ac-
cessed Web pages. On average each of those Web document
consisted out of 8.64 frames resulting in a final number of
4,358,031 (not necessary unique) URLs.

In total our infrastructure captured 24,474,306 data flows
from potentially tainted sources to security sensitive sinks.
Please refer to Table 1 for details on the distribution of flows,
depicted by their sources and sinks.

6.3 Selective Exploit Generation

As shown in the previous Section, the total number of
potentially vulnerable data flows from insecure sources to
security sensitive sinks is surprisingly high. In our study, the
sheer number of found flows exceeds the number of analyzed
pages by a factor of about 48.5.

Both our exploit generation and validation processes are
efficient. Generating and testing an XSS exploit for a se-
lected data flow requires roughly as much time as the initial
analyzing process of the corresponding Web page. However,
due to the large amount of observed flows, testing all data
flows would have required significantly more time than the
actual crawling process. Hence, to balance our coverage and
broadness goals, we selected a subset out of all recorded, po-

URL Cookie document.referrer | window.name | postMessage | Web Storage || Total

HTML Sinks 1,356,796 | 1,535,299 240,341 35,466 35,103 16,387 3,219,392
JavaScript Sinks 22,962 359,962 511 617,743 448,311 279,383 1,728,872
URL Sinks 3,798,228 | 2,556,709 | 313,617 83,218 18,019 28,052 6,798,743
Cookie Sink 220,300 10,227,050 | 25,062 1,328,634 2,554 5,618 11,809,218
Web Storage Sinks | 41,739 65,772 1,586 434 194 105,440 215,165
postMessage Sink 451,170 77,202 696 45,220 11,053 117,575 702,916
Total 5,891,195 | 14,821,994 | 581,813 2,110,715 516,134 552,455 24,474,306

Table 1: Data flow overview, mapping sources (top) to sinks (left)

tentially vulnerable data flows, based on the following crite-

ria:

(C1) The data flow ended in a sink that allows, if no fur-
ther sanitization steps were taken, direct JavaScript
execution. Hence, all flow into cookies, Web Storage,
or DOM attribute values were excluded.

(C2) The data flow originates from a source that can imme-
diately be controlled by the adversary, without pro-
grammatic preconditions or assumptions in respect to
the processing code. This criteria effectively excluded
all flows that come from second order sources, such
as cookies or Web Storage, as well as flows from the
postMessage API.

(C3) Only data flows without any built-in escaping methods
and data flows with non-matching escaping methods
were considered. Data flows, for which the observed
built-in escaping methods indeed provide appropriate
protection for the flow’s final sink were excluded.

(C4) For each of the remaining data flows we generated ex-
ploits. However, many flows led to the generation of
exactly the same exploit payloads for exactly the same
URL - e.g. when a web page inserts three scripts via
document .write and always includes location.hash
at a similar location. In order to decrease the overhead
for testing the exploits, our system only validates one
of these exploits.

Starting from initial 24,474,306 flows, we successively ap-
plied the outlined criteria to establish the set of relevant
flows:

24,474,306 L 4,948,264 <25 1,825,598 &)

3, 313.794 <4 181, 238

Thus, in total we generated 181,238 test payloads, out of
which a total of 69,987 successfully caused the injected Java-
Script to execute. We discuss the specifics of these results
in the next Section.

6.4 Found vulnerabilities

In total, we generated a dataset of 181,238 test payloads
utilizing several combinations of sources and sinks. As dis-
cussed in Section 6.3 (C3), all flows which are encoded are
filtered early on. For Google Chromium, which we used in
our testing infrastructure, adhering to this rule we also must
filter all those exploits that use either location.search or
document .referrer to carry the payloads. This is due to
the fact that both these values are automatically encoded
by Chromium. Hence, we chose to test these vulnerabili-
ties in Internet Explorer 10 whereas the rest of the URLs
were verified using our aforementioned crawling infrastruc-
ture. Since the number of exploits utilizing search vulnera-
bilities amounts to 38,329 and the sum for referrer reached

5083, the total number of exploits tested in Chromium was
reduced to 137,826, whereas the remaining 43,412 exploits
were tested using Internet Explorer.

Out of these, a total number of 58,066 URLs tested in
Chromium triggered our verification payload. Additionally,
we could exploit 11,921 URLs visited in Internet Explorer.
This corresponds to a success rate of 38.61% in total, and a
success rate of 42.13% when only considering vulnerabilities
exploitable in Chromium.

As we discussed earlier, we crawled down one level from
the entry page. We assume that a high number of Web sites
utilize content management systems and thus include the
same client-side code in each of their sub pages. Hence, to
zero in on the number of actual vulnerabilities we decided
to reduce the data set by applying a uniqueness criterion.

For any finding that triggered an exploit, we therefore re-
trieved the URL, the used break out sequence, the type of
code (inline, eval or external) and the exact location. Next,
we normalized the URL to its corresponding second-level
domain. To be consistent in regards to our selection of do-
mains, we used the search feature on alexa.com to determine
the corresponding second-level domain for each URL. We
then determined for each of the results the tuple:

{domain, break out sequence, code type, code location}

In regards to the code location, we chose to implement the
uniqueness to be the exact line and column offset in case
of external scripts and evals, and the column offset in in-
line scripts. Applying the uniqueness filter to the com-
plete dataset including those pages only exploitable on In-
ternet Explorer, we found a total of 8,163 unique exploits
on 701 different domains, whereas a domain corresponds to
the aforementioned normalized domain. Due to the nature
of our approach, among these were also domains not con-
tained in the top 5000 domains. Thus, we applied another
filter, removing all exploits from these domains outside the
top 5000. This reduced the number of unique exploits to
6,167, stemming from 480 different domains. In respect to
the number of domains we originally crawled, this means
that our infrastructure found working exploits on 9.6% of
the 5000 most frequented Web sites and their sub-domains.

When considering only exploits that work in Chromium,
we found 8,065 working exploits on 617 different domains,
including those outside the top 5000. Again filtering out
domains not contained in the 5000 most visited sites, we
found 6,093 working exploits on 432 of the top 5000 domains
or their sub-domains.

Among the domains we exploited were several online bank-
ing sites, a poplar social networking site as well as govern-
mental domains and a large internet-service provider run-
ning a bug bounty program. Furthermore, we found vulner-
abilities on Web sites of two well-known AntiVirus products.

6.5 Selected Case Studies

During the analysis of our findings, we encountered several
vulnerabilities which exposed interesting characteristics. In
the following subsections, we provide additional insight into
these cases.

6.5.1 JSONP + HTTP Parameter Pollution

As stated in Section 2, flows into URL sinks are not eas-
ily exploitable. Only if the attacker controls the complete
string, he can make use of data and javascript URLSs to ex-
ecute JavaScript code. However, in our dataset we found
a particularly interesting coding pattern, that allows script
execution despite the fact that the attacker only controls
parts of the injected URLs. In order to abuse this pattern a
Web page must assign a partly tainted string to a script.src
attribute that includes a JSONP script with a callback pa-
rameter (See Listing 5).

Listing 5 JSONP script include

var script = document.createElement (’script’)
script.src = "http://example.org/data.json?u="
+ taintedValue + "&callback=cb_name";

In many cases the callback parameter is reflected back
into the script in an unencoded/unfiltered fashion. Hence,
the attacker could inject his own code into the script via
this parameter. However, the callback parameter is hard
coded and the attacker is not able to tamper with it at first
sight. Nevertheless, it is possible to inject a second callback
parameter into the script URL via the taintedValue. This
results in the fact that two parameters with the same name
and different values are sent to the server when requesting
the script. Depending on the server-side logic the server will
either choose the first or the second parameter (We found
both situations, and depending on the position of the taint-
edValue we were able to exploit both situations). Hence, by
conducting this so-called HT'TP Parameter Pollution attack,
the attacker is able to inject his value into the content of the
script, which is afterwards embedded into the Web page.

One particularly interesting fact is that simply encoding
the taintedValue will not protect against exploitation. In-
stead, the JSONP callback parameter needs to be sanitized.
During our experiments we found one vulnerable callback
parameter quite often on many different Web sites, which
seemed to stem from jQuery (or at least, always called the
same jQuery function).

6.5.2 Broken URL parsing

As browsers sometimes auto-encode certain parts of user
controlled values, it is not possible to inject code into some
of the analyzed sources. Omne example for this is loca-
tion.search that is auto-encoded by all browser except In-
ternet Explorer. Another source that is encoded by every
modern browser is location.pathname. An injection via
location.pathname is in general not possible until the ap-
plication itself decodes the value. An additional encoding
or sanitization step is therefore not necessary for these val-
ues. This fact, however, also leads to security vulnerabili-
ties when Web developers trust in this auto-encoding feature
while at the same time conducting incorrect URL parsing.

In our analysis, we found many examples where this fact
leads to vulnerabilities. In the following we cover some ex-

amples where code fragments seemed to extract automati-
cally encoded values (and hence no sanitization is needed),
but due to non-standard parsing, extracted also unencoded
parts in malicious cases.

1. Task: Extract host from URL

2. What it really does: Extract everything between www.

and .com (e.g. whole URL)
3. e.g. http://www.example.com/#notEncoded.com

var regex = new RegExp("/www\..*\.com/g");
var result = regex.exec(location.href);

1. Task: Extract GET parameter foo

2. What it really does: Extracts something that starts
with foo=

3. e.g. http://www.example.com/#?foo=notEncoded

var regex = new RegExp("[\\7&]foo=(["&#]1*)");
var result = regex.exec(location.href);

1. Task: Extract all GET parameters

2. What it really does: Last GET parameter contains the
unencoded Hash

3. e.g. http://example.com/?foo=bar#notEncoded

location.href.split(’?’)[1].split (’&’) [x]
.split (°=")

6.5.3 Persistent DOM-based XSS

As seen in Table 1, our system captured also some flows
into cookies and into the Web Storage API. However, we did
not include it into our automatic exploit generation. Nev-
ertheless, we were able to manually find several persistent
DOM-based XSS. We detected flows that first came from
user input and went into Cookie or Web Storage sinks effec-
tively persisting the data within the user’s browser. In the
cases where we could trigger a successful exploit, this data
was then used in a call to eval, hence exposing the Web site
to persistent DOM-based XSS.

6.5.4 window.name flows

Within our dataset, we detected a surprisingly high num-
ber (>2 million) of flows originating from window.name that
we couldn’t explain at first sight. Although some of them
were exploitable, we soon discovered the reason for this num-
ber. Most of these flows are not exploitable via DOM XSS
as they are caused by a simple programming error. When
declaring a local variable a developer has to use the var key-
word. If someone declares a variable named name inside a
function and misses the var keyword or if a local variable is
created directly within a script block that is executed in the
global scope, the variable is declared global (See Listings 6
and 7). Since inside a browser, the global object is window,
the data is written to window.name. If the same variable is
used within a call to a sink within the same script block, the
corresponding flow is not exploitable as window.name was
overwritten with benign data. However, this fact represents
another serious issue: window.name is one of the very few

Listing 6 window.name bug 1: Missing var keyword

function test (O{
name = doSomething();
document .write (name);

};

Listing 7 window.name bug 2: Declaration within the
global scope

<script>
var name = doSomething();
document .write (name) ;
</script>

properties that can be accessed across domain boundaries.
Hence, any data that is written to this property can be ac-
cessed by third parties. This programming error, therefore,
represents a serious information leakage problem, if sensi-
tive data is written to such a global name variable. Given
the huge amount of flows, it is very likely that this pattern
could be misused to steal sensitive information.

6.6 Effectiveness of Chromium’s XSS Filter

Modern browsers like Chromium and its commercial coun-
terpart Google Chrome are equipped with client-side filter
capabilities aiming at preventing XSS attacks [1]. In order to
analyze the effectiveness of Chromium’s XSS Filter, we uti-
lized our successful exploits and tried to execute them with
the activated filter. Out of the 701 domains we found, 300
domains were still susceptible to XSS even with Chromium’s
auditor enabled.

After further examination, we found three distinguishing
characteristics for these working exploits. For one, none of
the exploits abusing JavaScript sinks, such as eval (), were
detected by XSS Auditor. This stems from the fact that
the auditor is implemented inside the HTML parser and
thus cannot detected direct JavaScript sinks. Furthermore,
exploits that were caused by remote script includes were not
detected. The third type of undetected exploits was caused
by JSONP vulnerabilities as discussed in Section 6.5.1.

On a positive note, in our study, we found that none of the
exploits that targeted inline vulnerabilities passed through
the filter. However, please note, that this experiment carries
no reliable indication of protection robustness in respect to
the exploits, that were stopped. We did not make any at-
tempts to obfuscate the exploit payload [12] or use other
filter evasion tricks [13].

In 2011 Nikiforakis demonstrated that Chrome’s filter is
not able to cope with exploits that utilize more than one
injection point at once [21]. If we take our figures from
Section 6.2 into account, we see that a tainted string consists
— on average — of about three tainted substrings. Thus, an
attacker has on average three possible injection points in
order to leverage the techniques presented by Nikiforakis.
Therefore, we have good reasons to believe that the numbers
presented in this Section must rather be seen as a lower
bound.

7. RELATED WORK

To the best of our knowledge, DOMinator [7] was the first
browser-based tool to test for DOM-based XSS via dynamic
taint-tracking. For this purpose, DOMinator instruments
Firefox’s SpiderMonkey JavaScript engine. Unlike our tech-
nique, DOMinator does not track data flows on a byte level.
Instead, it employs a function tracking history to store the
operations which were called on the original, tainted input
to result into the final, still tainted, string flowing into a
sink. Also, it does not feature a fully automated vulnerabil-
ity validation.

FLAX [25] is the conceptionally closest approach to our
work. Similar to our system, FLAX also utilizes byte-level
taint-tracking to identify insecure data flows in JavaScript.
However, there are several key differences in which we im-
prove over FLAX: For one, FLAX’s taint analysis is not
fully integrated in the JavaScript engine. Instead, the actual
analysis is done on program slices which are translated into
JASIL, a simplified version of JavaScript, which expresses
the operational semantics of only a subset of JavaScript.
In contrast, through extending JavaScript’s low-level string
type, we achieve full language and API coverage. Further-
more, FLAX employs fuzzing for vulnerability testing, while
our approach leverages the precise source and sink context
information to create validation payloads that determinis-
tically match the respective data flows specifics. Finally,
using a large scale study we successfully demonstrated that
our system is compatible with the current code practices in
today’s Web. In contrast, FLAX was only practically eval-
uated on a set of 40 Web applications and widgets.

Criscione [5] presented an automatic tool to find XSS
problems in a scalable black box fashion. Similar to our
approach, they also use actual browser instances for test ex-
ecution and vulnerability validation. However, they don’t
utilize taint propagation or precise payload generation. In-
stead, the tests are done in a fuzzing fashion.

Finally, a related approach was presented by Vogt et.
al. [30], which utilizes a combination of static analysis and
dynamic information flow tracking to mitigate XSS exploits.
However, instead of following the flow of untrusted data, the
focus is on security sensitive values, such as the user’s cookie,
and the potential exfiltration of those.

Server-side approaches and static taint analysis:
On the server-side various approaches using dynamic taint-
tracking to detect and mitigate XSS vulnerabilities have
been proposed [20, 23, 4, 27, 19, 33, 2]. Furthermore, as
an alternative to dynamic taint-tracking, static analysis of
source code to identify insecure data flows is a well estab-
lished tool [9, 28, 31, 14, 32, 10].

Attack generation: In order to decrease false positive
rates several approaches have been studied to automatically
generate a valid exploit payloads for validation purposes.
In 2008, Martin et al. [18] presented a method to gener-
ate XSS and SQL injection exploits based on goal-directed
model checking. Thereby, their system QED is capable of
performing a goal-directed analysis of any Java Web appli-
cation, which adheres to the standard servlet specification.
Based on the constructed model, a model checker is able
to generate a valid exploit that can be used to validate the
finding. As opposed to our approach the system operates
on the server-side code and thus focuses on server-side in-
jection vulnerabilities. Similar to this approach, Kieyzun et
al. [15] also focus on the automatic generation of attacks

targeting server-side injection vulnerabilities. In order to do
so, the authors use symbolic taint-tracking and input mu-
tations to generate example exploits. Thereby, several test
inputs are transmitted to the target service and depending
on the registered data flows, inputs are mutated to generate
malicious payloads. As opposed to our approach, their tool
Ardilla also only works on server-side code and thus rather
targets traditional XSS vulnerabilities. As it requires sev-
eral HTTP requests for generating a valid exploit, scaling is
far more difficult than with our approach. In [6], d’Amore
et al. present the tool snuck that is capable of automati-
cally evading server-side XSS filters. To function, however,
the tool needs input from a human tester that identifies the
application’s intended workflows and possible injection vec-
tors. The tool then automatically verifies whether the filter
functions works in a correct manner. In order to do so the
system identifies the exact injection context by using XPath
queries.

Empirical studies on JavaScript security: Due to its
ever growing importance in the Web application paradigm,
several security-relevant aspects of client-side JavaScript ex-
ecution have been studied empirically. For one, Yue and
Wang [34] examined the commonness of JavaScript prac-
tices that could lead to unauthorized code execution, namely
cross-domain inclusion of external JavaScript files and usage
of APIs that could lead to XSS. Their study is purely statis-
tically and no real vulnerability validation was conducted.
Zooming in on eval, Richards et al. [24] study how this
problematic API is used in the wild, identifying both usage
patterns that could be solved with safe alternatives as well as
instances, in which replacing eval would not be a straight
forward task. Furthermore, selected “HTML5” JavaScript
APIs have been studied in detail: Lekies & Johns [17] sur-
veyed the Alexa top 500,000 for potentially insecure usage
of JavaScript’s localStorage for code caching purposes and
Son & Shmatikov [26] examined the Alexa top 10,000 for vul-
nerabilities occurring from unsafe utilization of the postMes-
sage APIL.

8. CONCLUSION

In this paper, we presented a fully automated approach
to detect and validate DOM-based XSS vulnerabilities. By
direct integration into the browser’s JavaScript engine, we
achieve reliable identification of potentially insecure data
flows while maintaining full compatibility with productive
JavaScript code. Furthermore, the precise, byte-level con-
text informations of the resulting injection points enables us
to create attack payloads which are tailored to the vulnera-
bility’s specific conditions, thus, allowing for robust exploit
generation.

Using our system, we conducted a large scale empirical
study, resulting in the identification of 6,167 unique vulner-
abilities distributed over 480 domains, demonstrating that
9,6% of the Alexa top 5000 carry at least one DOM-based
XSS problem.

Acknowledgments

This work was in parts supported by the EU Projects Web-
Sand (FP7-256964) and STREWS (FP7-318097). The sup-
port is gratefully acknowledged.

9. REFERENCES

[1] BATES, D., BARTH, A., AND JACKSON, C. Regular
expressions considered harmful in client-side XSS
filters. In WWW ’10: Proceedings of the 19th
international conference on World wide web (New
York, NY, USA, 2010), ACM, pp. 91-100.

[2] BISHT, P., AND VENKATAKRISHNAN, V. N.
XSS-GUARD: Precise dynamic detection of cross-site
scripting attacks. In Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA’08)
(2008).

[3] CERT. Advisory ca-2000-02 malicious html tags
embedded in client web requests, February 2000.

[4] ConTI, J. J., AND RUSSO, A. A taint mode for
python via a library. In NordSec (2010), T. Aura,

K. Jarvinen, and K. Nyberg, Eds., vol. 7127 of Lecture
Notes in Computer Science, Springer, pp. 210-222.

[5] CriscioNE, C. Drinking the Ocean - Finding XSS at
Google Scale. Talk at the Google Test Automation
Conference, (GTAC’13), http://goo.gl/8qqHA, April
2013.

[6] D’AMORE, F., AND GENTILE, M. Automatic and
context-aware cross-site scripting filter evasion.
Department of Computer, Control, and Management
Engineering Antonio Ruberti Technical Reports 1, 4
(2012).

[7] D1 PAaoLA, S. DominatorPro: Securing Next
Generation of Web Applications. [software],
https://dominator.mindedsecurity.com/, 2012.

[8] GOOGLE DEVELOPERS. Chrome Extensions -
Developer’s Guide. [online], http://developer.
chrome.com/extensions/devguide.html, last access
06/05/13, 2012.

[9] GUARNIERI, S., PisTo1a, M., Trirp, O., DOLBY, J.,
TEILHET, S., AND BERG, R. Saving the world wide
web from vulnerable javascript. In ISSTA (2011),

M. B. Dwyer and F. Tip, Eds., ACM, pp. 177-187.

[10] GuHA, A., KRISHNAMURTHI, S., AND JiM, T. Using
static analysis for Ajax intrusion detection. In
Proceedings of the 18th international conference on
World wide web (WWW’09) (New York, NY, USA,
2009), ACM, pp. 561-570.

[11] HANNA, S., CHUL, E., SHIN, R., AKHAWE, D.,
BOEHM, A., SAXENA, P., AND SONG, D. The
emperor’s new apis: On the (in) secure usage of new
client-side primitives. In Web 2.0 Security and Privacy
(W2SP 2010) (2010).

[12] HEIDERICH, M., NAvA, E., HEYES, G., AND LINDSAY,
D. Web Application Obfuscation:

-/WAFs..Evasion.. Filters//alert (/Obfuscation/)-.
Elsevier/Syngress, 2010.

[13] HEYES, G. Bypassing XSS Auditor. [online],
http://www.thespanner.co.uk/2013/02/19/
bypassing-xss-auditor/, last accessed 08/05/13,
February 2013.

[14] JovaNovic, N., KRUEGEL, C., AND KIrRDA, E. Pixy:
A Static Analysis Tool for Detecting Web Application
Vulnerabilities. In IEEE Symposium on Security and
Privacy (May 2006).

[15] KiEYZUN, A., Guo, P. J., JAYARAMAN, K., AND
ERrNsT, M. D. Automatic creation of sql injection and
cross-site scripting attacks. In Proceedings of the 31st

[16]

[17]

[21]

[22]

International Conference on Software Engineering
(Washington, DC, USA, 2009), ICSE ’09, IEEE
Computer Society, pp. 199-209.

KLEIN, A. Dom based cross site scripting or xss of the
third kind. Web Application Security Consortium,
Articles 4 (2005).

LEKIES, S., AND JOHNS, M. Lightweight Integrity
Protection for Web Storage-driven Content Caching.
In 6th Workshop on Web 2.0 Security and Privacy
(W2SP 2012) (May 2012).

MARTIN, M., AND LAM, M. S. Automatic Generation
of XSS and SQL Injection Attacks with Goal-Directed
Model Checking. In Useniz Security (2008).

NaDJ1, Y., SAXENA, P., AND SONG, D. Document
Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In Network € Distributed System
Security Symposium (NDSS 2009) (2009).
NGUYEN-TUONG, A., GUARNIERI, S., GREENE, D.,
SHIRLEY, J., AND EVANS, D. Automatically hardening
web applications using precise tainting. In 20th IFIP
International Information Security Conference (May
2005).

NIKIFORAKIS, N. Bypassing Chrome’s Anti-XSS filter.
[online], http://blog.securitee.org/?p=37, last
access 08/05/13, September 2011.

NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A.,
ACKER, S. V., JOOSEN, W., KRUEGEL, C., PIESSENS,
F., AND VIGNA, G. You Are What You Include:
Large-scale Evaluation of Remote JavaScript
Inclusions. In 19th ACM Conference on Computer and
Communications Security (CCS 2012) (2012).
PieTRASZEK, T., AND BERGHE, C. V. Defending
against Injection Attacks through Context-Sensitive
String Evaluation. In Recent Advances in Intrusion
Detection (RAID2005) (2005).

RicHARDS, G., HAMMER, C., BURG, B., AND VITEK,
J. The eval that men do - a large-scale study of the
use of eval in javascript applications. In ECOOP
(2011), M. Mezini, Ed., vol. 6813 of Lecture Notes in
Computer Science, Springer, pp. 52-78.

25]

(26]

27]

(28]

29]

30]

(31]

(32]

33]

(34]

SAXENA, P., HANNA, S., POOSANKAM, P., AND
Sonag, D. FLAX: Systematic Discovery of Client-side
Validation Vulnerabilities in Rich Web Applications.
In NDSS (2010), The Internet Society.

SON, S., AND SHMATIKOV, V. The Postman Always
Rings Twice: Attacking and Defending postMessage
in HTML5 Websites. In Network and Distributed
System Security Symposium (NDSS’18) (2013).

Su, Z., AND WASSERMANN, G. The Essence of
Command Injection Attacks in Web Applications. In
Proceedings of POPL’06 (January 2006).

Tripp, O., PisTo1a, M., FINK, S. J., SRIDHARAN,
M., AND WEISMAN, O. TAJ: Effective Taint Analysis
for Java. In ACM SIGPLAN 2009 Conference on
Programming Language Design and Implementation
(PLDI 2009) (June 2009).

VIKrRAM, K., PRATEEK, A., AND LivsHITS, B. Ripley:
Automatically securing distributed Web applications
through replicated execution. In Conference on
Computer and Communications Security (Oct. 2009).
Vocr, P., NENTWICH, F., JovaANovIiC, N., KRUEGEL,
C., KirDA, E., AND VieNA, G. Cross Site Scripting
Prevention with Dynamic Data Tainting and Static
Analysis. In 14th Annual Network and Distributed
System Security Symposium (NDSS 2007) (2007).
WASSERMANN, G., AND SU, Z. Sound and Precise
Analysis of Web Applications for Injection
Vulnerabilities. In Proceedings of Programming
Language Design and Implementation (PLDI’07) (San
Diego, CA, June 10-13 2007).

XIE, Y., AND AIKEN, A. Static Detection of Security
Vulnerabilities in Scripting Languages. In 15th
USENIX Security Symposium (2006).

XU, W., BHATKAR, S., AND SEKAR, R.
Taint-Enhanced Policy Enforcement: A Practical
Approach to Defeat a Wide Range of Attacks. In 15th
USENIX Security Symposium (August 2006).

YUE, C., AND WANG, H. Characterizing insecure
javascript practices on the web. In WWW (2009),

J. Quemada, G. Ledn, Y. S. Maarek, and W. Nejdl,
Eds., ACM, pp. 961-970.

