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Abstract. Content Security Policies (CSP) provide powerful means to
mitigate most XSS exploits. However, CSP’s protection is incomplete. In-
secure server-side JavaScript generation and attacker control over script-
sources can lead to XSS conditions which cannot be mitigated by CSP.
In this paper we propose PreparedJS, an extension to CSP which takes
these weaknesses into account. Through the combination of a safe script
templating mechanism with a light-weight script checksumming scheme,
PreparedJS is able to fill the identified gaps in CSP’s protection capa-
bilities.

1 Introduction

1.1 Motivation

Cross-site Scripting (XSS) is one of the most prevalent security problems of
the Web. It is listed at the second place in the OWASP Top Ten list of the
most critical Web application security vulnerabilities [18]. Even though the basic
problem has been known since at least 2000 [4], XSS still occurs frequently, even
on high-profile Web sites and mature applications [24]. The primary defense
against XSS is secure coding on the server-side through careful and context-aware
sanitization of attacker provided data [19]. However, the apparent difficulties to
master the problem on the server-side have let to investigations of client-side
mitigation techniques.

A very promising approach in this area is the Content Security Policy (CSP)
mechanism, which is currently under active development and has already been
implemented by the Chrome and Firefox Web browsers. CSP provides powerful
tools to mitigate the vast majority of XSS exploits.

However, in order to properly benefit from CSP’s protection capabilities, site
owners are required to conduct significant changes in respect to how JavaScript
is used within their Web application, namely getting rid of inline JavaScript,

Listing 1 CSP example

Content -Security -Policy: default -src ’self’; img -src *;

object -src media.example.com;

script -src trusted.example.com;



such as event handlers in HTML attributes, and string-to-code transformations,
which are provided by eval() and similar functions (see Sec. 2.2 for further
details). Unfortunately, as we will discus in Section 3, all this effort does not
result in complete protection against XSS attacks. Some potential loopholes
remain, which cannot be closed by the current version of CSP.

1.2 Contribution and paper outline

In this paper, we explore the remaining weaknesses of CSP (see Sec. 3) and ex-
amine which steps are necessary to fill the identified gaps for completing CSP’s
protection capabilities. Based on our results, we propose PreparedJS, an exten-
sion of the CSP mechanism (see Sec. 5). PreparedJS is built on two pillars: A
templating format for JavaScript which follows SQL’s prepared statement model
(see Sec. 5.1) and a light-weight script checksumming scheme, which allows fine-
grained control over permitted script code (see Sec. 5.2). In combination with
the base-line protection provided by CSP, PreparedJS is able to prevent the full
spectrum of potential XSS attacks. We outline how PreparedJS can be realized
as a native browser component while providing backwards compatibility with
legacy browsers that cannot handle PreparedJS’s script format. Furthermore,
we report on a prototypical implementation in the form of a browser extension
for Google Chrome (see Sec. 6).

2 Technical background

2.1 Cross-site Scripting (XSS)

The term Cross-site Scripting (XSS) [26] summarizes a set of attacks on Web
applications that allow an adversary to alter the syntactic structure of the ap-
plication’s Web content via code or mark-up injection.

Even though XSS, in most cases, also enables the attacker to inject HTML or
CSS into the vulnerable application, the main concern with this class of attacks
is the injection of JavaScript. JavaScript injection actively circumvents all pro-
tective isolation measures which are provided by the same-origin policy [23], and
empowers the adversary to conduct a wide range of potential attacks, ranging
from session hijacking [17], over stealing of sensitive data [28] and passwords [27],
up to the creation of self-propagating JavaScript worms.

To combat XSS vulnerabilities, it is recommended to implement a careful and
robust combination of input validation (only allow data into the application if it
matches its specification) and output sanitation (encode all potential syntactic
content of untrusted data before inserting it into an HTTP response). However,
a recent study [24] has shown, that this protective approach is still error prone
and the quantitive occurrence of XSS problems is not declining significantly.

2.2 Content Security Policies (CSP)

Due to the fact, that even after several years of increased attention to the XSS
problem, the number of vulnerabilities remains high, several reactive approaches



have been proposed, which mitigate the attacks, even if a potential XSS vulner-
ability exists in a Web application.

Content Security Policies (CSP) [25] is such an approach: A Web application
can set a policy that specifies the characteristics of JavaScript code which is
allowed to be executed1. CSP policies are added to a Web document through
an HTTP header or a Meta-tag (see Lst. 1 for an example). More specifically, a
CSP policy can:

1. Disallow the mixing of HTML mark-up and JavaScript syntax in a single
document (i.e., forbidding inline JavaScript, such as event handlers in ele-
ment attributes).

2. Prevent the runtime transformation of string-data into executable JavaScript
via functions such as eval().

3. Provide a list of Web hosts, from which script code can be retrieved.

If used in combination, these three capabilities lead to an effective thwarting
of the vast majority of XSS attacks: The forbidding of inline scripts renders direct
injection of script code into HTML documents impossible. Furthermore, the
prevention of interpreting string data as code removes the danger of DOM-based
XSS [10]. And, finally, only allowing code from whitelisted hosts to run deprives
the adversary from the capability to load attack code from Web locations that
are under his control.

In summary, strict CSP policies enforce a simple yet highly effective pro-
tection approach: Clean separation of HTML-markup and JavaScript code in
connection with forbidding string-to-code transformations via eval(). The fu-
ture of CSP appears to be promising. The mechanism is pushed into major Web
browsers, with recent versions of Firefox (since version 4.0) and Chrome (since
version 13) already supporting it. Furthermore, CSP is currently under active
standardization by the W3C [29].

However, using CSP comes with a price: Most of the current practices in
using JavaScript, especially in respect to inline script and using eval(), have to
be altered. Making an existing site CSP compliant requires significant changes
in the codebase, namely getting rid of inline JavaScript, such as event handlers
in HTML attributes, and string-to-code transformations, which are provided by
eval() and similar functions.

3 CSP’s remaining weaknesses

In general, CSP is a powerful mitigation for XSS attacks. If a site issues a strong
policy, which forbids inline scripts and unsafe string-to-code transforms, the vast
majority of all potential exploits will be robustly prevented, even in the presence
of HTML injection vulnerabilities.

1 CSP also provides further features in respect to other HTML elements, such as
images or iframe. However, these features do not affect JavaScript execution and,
hence, are omitted in the CSP description for brevity reasons.



Listing 2 JavaScript for dynamic script loading (loader.js)

1 (function () {

2 var ga = document.createElement(’script ’);

3 ga.src = ’http :// serv.com/ga.php?source=’+document.location;

4 var s = document.getElementsByTagName(’script ’)[0];

5 s.parentNode.insertBefore(ga , s);

6 })();

However, as we will show in this section, three potential attack variants re-
main feasible under the currently standardized version 1.0 of CSP [29]. Further-
more, in Section 3.4, we will discuss to which degree the proposed enhancements
of CSP 1.1 affect these identified weaknesses.

3.1 Weakness 1: Insecure server-side assembly of JavaScript code

As described above, CSP can effectively prevent the execution of JavaScript
which has been dynamically assembled on the client-side. This is done by for-
bidding all functions that convert string data to JavaScript code, such as eval()
or setTimeout(). However, if a site’s operator implements dynamic script as-
sembly on the server-side, this directive is powerless.

Server-side generated JavaScript is utilized to fill values in scripts with data
that is retrieved at runtime. If such data can be controlled by the attacker, he
might be able to inject further JavaScript.

Take for instance the scenario that is outlined in Listings 2 and 3: A script-
loader JavaScript (loader.js, Lst. 2), is used to dynamically outfit further
JavaScript resources with runtime data via URL parameters2. The referenced
script (ga.php, Lst. 3) is assembled dynamically on the server-side, including
the dynamic data in the source code without any sanitization.

If the attacker is able to control the document.location property, he can
break out of the variable assignment in line 5 and inject arbitrary JavaScript
code. Thus, he can effectively circumvent CSP’s protection features: The attack
uses no string-to-code conversion on the client-side. All the browser retrieves
is apparently static JavaScript. In addition, the attack does not rely on inline
scripts, as the injected script is included externally. Finally, the vulnerable script
is part of the actual application and, hence, the script’s hosting domain is in-
cluded in the policy’s whitelist.

2 The depicted code was consciously designed in a naive fashion to make the issue easily
understandable. In more realistic conditions, the attacker controlled data could find
its way into the script assembly in more subtle fashions, e.g., through existing data
in the user’s session.



Listing 3 Variable setting script (ga.php)

1 // JS code to set a global variable with the

2 // request ’s call context

3 <?php

4 $s = ’$_GET[" source "]’;

5 echo "var callSource=’".$s." ’;";

6 ?>

7 // [... rest of the JavaScript]

3.2 Weakness 2: Full control over external, whitelisted scripts

It is common practice to include external JavaScript components from third
party hosts into Web applications. This is done to consume third party services
(such as Web analytics), enhance the Web application with additional function-
ality (e.g., via integrating external mapping services), or for monetary reasons
(i.e, to include advertisements).

Recently Nikiforakis et al. conducted a wide scale analysis on the current
state of cross-domain inclusion of third party JavaScripts [16]. Their survey
showed that 88.45% of the Alexa top 10,000 Web sites included at least one
remote JavaScript. If the attacker is able to control the script’s content, which is
provided by the external provider, he is able to execute JavaScript in the context
of the targeted Web application.

A straight forward scenario for such an attack is a full compromise of one of
the external script providers for the targeted site. In such a case, the adversary
is able to inject and execute arbitrary JavaScript in the context of targeted
application. To examine this potential threat, Nikiforakis et al. created a security
metric for script providers, which is based on indicators for maintenance quality
of the hosts. Subsequently, they compared the security score of the including
sites to the score of the consumed script providers: In approximately 25% of all
cases, the security score of the script provider was lower than the score of the
consumer, suggesting that a compromise of the script provider was more likely
than a compromise of the targeted Web application.

As alternatives to a full compromise of the script provider, Nikiforakis et
al. list four further, more subtle attacks which enable the same class of script
inclusion attacks and show their practical applicability (see [16] for details).

CSP is not able to protect against such cases: To utilize external JavaScript
components, a CSP-protected site has to whitelist the script provider’s domain
in the CSP policy. However, as the adversary is able to control the contents of
the whitelisted host, he is able to circumvent CSP’s protection mechanism.

3.3 Weakness 3: Injection of further script-tags

This class of potential CSP circumvention was first observed by Michael Za-
lewski [31]: Given an HTML-injection vulnerability, a strict CSP policy will



Listing 4 CSP 1.1 policy requiring script-nonce

Content -Security -Policy: script -src ’self’;

script -nonce A3F1G1H41299834E;

effectively prevent the direct injection of attacker-provided script code. How-
ever, he still is be able to inject HTML markup including further script-tags
pointing to the whitelisted domains.

This way an attacker is able to control the URLs and order from which the
scripts in a Web page are retrieved. Thus, he might be able to combine existing
scripts in an unforeseen fashion. All scripts in a Web page run in the same
execution context. JavaScript provides no native isolation or scoping, e.g., via
library specific name-spaces. Hence, all side-effects that a script causes on the
global state directly affect all scripts that are executed subsequently. Given the
growing quantity and complexity of script code hosted by Web sites, a non-trivial
site might provide an attacker with a well equipped toolbox for this purpose.
Also, the adversary is not restricted to the application’s original site. Scripts
from all domains that are whitelisted in the CSP-policy can be combined freely.

Only little research has been conducted to validate this class of attacks.
Nonetheless, such attacks are theoretically possible. Furthermore, with the ever-
growing reliance on client-side functionality and the rising number of available
JavaScripts their likelihood can be expected to increase.

3.4 CSP 1.1’s script-nonce directive

The 1.0 version of CSP currently holds the status of a W3C “Candidate Rec-
ommendation”. This means the significant features of the standard are mostly
locked and are very unlikely to change in the further standardization process.
Hence, major changes and new features of CSP will happen in the subsequent
versions of CSP. The next iteration of the standard is CSP version 1.1, which is
currently under active discussion [30].

Among other changes, that primarily focus on the data exfiltration aspect
of CSP, the next version of the standard introduces a new directive called
script-nonce. This directive directly relates to a subset of the identified weak-
nesses of CSP 1.0. In case, that a site’s CSP utilizes the script-nonce directive
(see Lst. 4), the policy specifies a random value that is required to be contained
in all script-tags of the site. Only JavaScript in the context of a script-tag
that carries the nonce value as an attribute value is permitted to be executed
(see Lst. 5). For apparent reasons, a site is required to renew the value of the
nonce for every request. Please note, that the nonce is not a signature or hash
of the script nor has it other relations to the actual script content. This charac-
teristic allow the usage of the directive to reenable inline scripts (as depicted in
Lst. 5) without significant security degradation.



Listing 5 Exemplified usage of script-nonce

<script nonce="A3F1G1H41299834E">

alert("I execute! Hooray!");

</script >

<script > alert("I don’t execute. Boo!"); </script >

Effect on the identified weaknesses: The script-nonce directive effectively pre-
vents the attacker from injecting additional script-tags into a page, as he won’t
be able to insert the correct nonce value into the tag. In this section, we examine
to which degree the directive is able to mitigate the identified weaknesses:

Unsafe script assembly: To exploit this weakness, an attacker is not neces-
sarily required to inject additional script-tags into the page. The unsafe script
assembly can also happen in legitimate scripts due to attacker controlled data
which was transported through session data or query parameters set by the
vulnerable application itself.

Adversary controlled scripts: In such cases, the directive has no effect.
The script import from the external host is intended from the vulnerable appli-
cation. Hence, the corresponding script-tag will carry the nonce and, thus, is
permitted to be executed.

Adversary controlled script tags: This weakness can be successfully miti-
gated through the directive. As the attacker is not able to guess the correct nonce
value, he cannot execute his attack through injecting additional script-tags.

Only the third weakness can be fully mitigated through the usage of script-
nonces. The reason for the persistance of the other two problems, lies in the
missing relationship between the nonce and the script content. A further poten-
tial downside of the script-nonce directive is that it requires dynamic creation
of the CSP policy for each request. Hence, a rollout of a well audited, static
policy is not possible.

3.5 Analysis

The discussed CSP weaknesses are caused by two characteristics of the policy
mechanism:

1. A site can only specify the origins which are allowed to provide script content,
but not the actually allowed scripts.

2. Even if a site would be able to provide more fine-grained policies on a per-
script-URL level, at the moment there are no client-side capabilities to reason
about the validity of the actual script content.

The first characteristic is most likely a design decision which aims to make
CSP more easily accessible and maintainable to site-owners. It could be resolved
through making the CSP policy format more expressive. However, the second
problem is non-trivial to address, especially in the presence of dynamically as-
sembled scripts.



4 Goal: Stable Cryptographic Checksums for Scripts

As deducted above, all existing loopholes which allow the circumvention of CSP
can be reduced to the fact that no reliable link exists between the policy and
the actual script code. Hence, a mechanism is needed that allows site owners to
clearly define which exact scripts are allowed to be executed. And, as seen in
Sec. 3.1, this specification mechanism should not only rely on a script’s URL. It
should also take the script’s content into consideration.

A straight forward approach to solve this problem is utilizing script signatures
or cryptographic checksums, that are calculated over the scripts’ source code:
On deploy-time the checksums of all legitimate JavaScripts are generated and
are included in an extended CSP policy. At runtime, this policy is communicated
to the browser which in turn only allows the execution of scripts with correct
checksums. This technique works well as long as only static scripts are utilized.

Unfortunately, this approach is too restrictive. As soon as the need for dy-
namic data values during script assembly occurs, the mechanism cannot be ap-
plied anymore: The source code of the scripts is non-static and, hence, creat-
ing source code checksums on deploy-time is infeasible. However, creating these
checksums at runtime defeats their purpose, as in such cases in-script injection
XSS (see Sec. 3.1) will be included in the checksum and, thus, the browser will
allow the script to be executed.

Therefore, a secure mechanism is needed which allows the creation of stable
cryptographic checksums of script code while still allowing a certain degree of
flexibility in respect to run-time script creation.

5 PreparedJS

In this section, we present PreparedJS - our approach to fill the identified weak-
nesses of CSP. PreparedJS is built on two pillars:

– A templating mechanism, that enables developers to separate dynamic data
values from script code, thus, allowing the usage of purely static scripts
without losing needed flexibility,

– and a script checksumming scheme, that allows the server to non-ambiguously
communicate to the browser which scripts are allowed to run.

As the name of our mechanism suggests, the templating mechanism is in-
spired by SQL’s prepared statements: In a prepared statement, the query syntax
is separated from the data values, using placeholders. At runtime, this statement
is passed to the database together with a set of values which are to be used within
the query at the placeholders’ position. This way, the statement can be outfitted
with dynamic values. As the syntactic structure of the statement has already
been processed by the database engine, before the placeholders are exchanged
with the data values, code injection attacks are impossible.

Following the prepared statement’s model, PreparedJS defines a JavaScript
variant which allows placeholder for data values, which will be filled at runtime



Listing 6 PreparedJS variable setting script (ga.js)

// JS code to set a global variable with the

// request ’s call context

var callSource= ?source ?;

// [... rest of the JavaScript]

in a fashion that is unsusceptible to code injection vulnerabilities (see Sec. 5.1
for details). This way, developers can create completely static script source code,
for which the calculation of stable cryptographic checksums on deploy-time is
feasible. While the Web application is accessed, only scripts which have a valid
checksum are allowed to run: If the checksum checking terminates successfully,
the data values, which are retrieved along with the script code, are inserted
into the respective placeholders, thus, creating a valid JavaScript, that can be
executed by the Web browser.

5.1 JavaScript templates for static server-side scripts

In this section, we give details on the PreparedJS templating mechanism. The
mechanism consists of two components: The script template and the value list.

The PreparedJS script template format supports using insertion marks in
place of data values. These placeholders are named using the syntactic convention
of framing the placeholders identifier with question marks, e.g., ?name?. Such
placeholders can be utilized in the script code, wherever the JavaScript grammar
allows the injection of data values. See Listing 6 for a template which represents
the dynamic script of Listing 3.

The PreparedJS value list contains the data values, which are to be ap-
plied during script execution in the browser. The list consists of identifier/-
value pairs, in which the identifier links the value to the respective placeholder
within the script template. The values can be either basic datatypes, i.e., strings,
booleans, numbers, or JSON (JavaScript Object Notation [5]) formated complex
JavaScript data objects. The latter option allows the insertion of non-trivial data
values, such as arrays or dictionaries.

Also, the value list itself follows the JSON format, which is very well suited
for this purpose: The top level structure represents a key/value dictionary. By
using the placeholder identifiers as the keys in the dictionary, a straight forward
mapping of the values to insertion points is given. Furthermore, JSON is a well
established format with good tool, language, and library support for creation
and verification of JSON syntax. See Listing 7 for a PHP-script which creates
the value list for Lst. 6 according to the dynamic JavaScript assembly in Lst. 3.

In the communication with the Web browser, the script template and the
value list are sent in the same HTTP response, using an HTTP multipart re-
sponse (see Lst. 8).



Listing 7 Creating value list for Lst. 6 (ga values.php)

<?php

$source = $_GET["source"];

$vals = array(’callSource ’ => $source );

echo json_encode($vals );

?>

5.2 Code legitimacy checking via script checksums

As discussed in Section 3, parts of the existing shortcomings of CSP result from
the mechanism’s inability to specify which exact scripts are allowed to run in
the context of a given Web page. Within PreparedJS we fill the gap by unam-
biguously identifying whitelisted scripts through their script checksums.

A script’s PreparedJS-checksum is a cryptographic hash calculated over the
corresponding PreparedJS script template. The script’s value list is not included
in the calculation. This allows a script’s values to change on run time without
affecting the checksum.

To whitelist a specific scripts, a policy lists the script’s checksums in the
policy declaration (see Sec. 5.3). For each script that is received by the browser,
the browser calculates the checksum of the corresponding script template and
verifies that it indeed is contained in the policy’s set of allowed script checksums.
If this is the case, the script is permitted to execute. If not, the script is discarded.

This approach is well aligned with the applicable attacker type. The sole
capability of the XSS Web attacker consists of altering the syntactic structure
of the application’s HTML content. The XSS attacker is not able to alter the
application’s CSP policy, which is generally transported via HTTP header (if the
attacker is able to compromise the site’s CSP itself, all provided protection is void
anyway). Hence, if the application’s server-side can unambiguously communicate
to the browser which exact scripts are whitelisted, altering the syntactic structure
of the document has no effect.

For this purpose, cryptographic checksums are well suited: The checksum is
sufficient to robustly identify the script, as long as a strong cryptographic hash
function algorithm, such as SHA256, was used. Due to the algorithm’s security
properties, is it a reasonable assumption that the attacker is not able to produce
a second script which both carries his malicious intend and produces the same
checksum.

5.3 Extended CSP Syntax

For the PreparedJS scheme to function, we require a simple extension of the CSP
syntax. In addition to the list of allowed script hosts, also the list of allowed script
checksums has to be included in a policy. This can be achieved, for instance, using
a comma delimited list of script checksums following directly a whitelisted script
host (see Lst. 9 for an example).



Listing 8 PreparedJS HTTP multipart response

HTTP /1.1 200 OK

Date: Thu , 23 Jan 2012 10:03:25 GMT

Server: Foo /1.0

Content -Type: multipart/form -data;boundary=xYzZY

--xYzZY

Content -Type: application/pjavascript;

charset=UTF -8

Content -Disposition: form -data;name=" preparedJS"

// JS code to set a global variable with the

// request ’s call context

var callSource = ?callSource ?;

--xYzZY

Content -Type: application/json

Content -Disposition: form -data;name=" valueList"

{" callSource ": "http :// serv.com?this=that#attackerData "}

--xYzZY --

5.4 PreparedJS-aware script tags

CSP was carefully designed with backward compatibility in mind: If a legacy
browser, that does not yet implement CSP, renders a CSP-enabled Web page,
the CSP header is simply ignored and the page’s functionality is unaffected.

We intend to follow this example as closely as possible. However, as the
PreparedJS-format differs from the regular JavaScript syntax (see Lst. 8), the
server-side explicitly has to provide backwards compatible versions of the script
code. A PreparedJS-aware HTML document utilizes a slightly extended syntax
for the script-tag. The reference to the PreparedJS-script is given in a ded-
icated pjs-src-attribute. If an application also wants to provide a standard
JavaScript for legacy fallback, this script can be referenced in the same tag
using the standard src-attribute (see Lst. 10). This approach provides transpar-
ent backwards compatibility on the client-side: PreparedJS-aware browsers only
consider the pjs-src-attribute and handle it according to the process outlined
above. The legacy script is never touched by such browsers. Older browsers ig-
nore the pjs-src-attribute, as it is unknown to them, and retrieve the fallback
script referenced by src-attribute.

Please note: If naively implemented, this approach causes additional imple-
mentation effort on the server-side, as all scripts have to be maintained in two
versions. However, in Section 6.2 we show, how applications can provide back-
wards compatibility support for legacy browser automatically.



Listing 9 Extended CSP syntax, whitelisting two script checksums

X-Content -Security -Policy: script -src ’self’

(135 c1ac6fa6194bab8e6c5d1e7e98cd9 ,

2de1cd339756e131e873f3114d807e83)

Listing 10 Extended PreparedJS script-tag syntax

<script src ="[ path to legacy script ]"

pjs -src ="[ path to preparedJS script]">

5.5 Summary: The three stages of PreparedJS

PreparedJS affects three stages in an application’s lifecycle: The development
phase, the deployment phase, and the execution phase:

During development: If the Web application requires JavaScript, with
dynamic, run-time generated data values, PreparedJS templates are created for
these scripts and methods are implemented to generate matching value lists.

On deployment: For all JavaScripts and PreparedJS templates, which are
authorized to run in the context of the Web application, cryptographic check-
sums are calculated. On application deployment these checksums are added to
the site’s extended CSP policy.

During execution: Before the execution of regular script code, the CSP
policy is checked, if the script’s host is whitelisted in the policy and if for this
host a list of allowed script checksums is given. If both is the case, the crypto-
graphic checksum for the received script code is calculated and compared with
the policy’s whitelisted script checksums. Only if the calculated checksum can
be found in the policy, the script is allowed to execute.

For scripts in the PreparedJS format, first the script template is retrieved
from the multipart response (see Lst. 8). Then, the checksum is calculated over
the template. If the checksum test succeeds, the value list is retrieved from the
HTTP response and the placeholders in the script are substituted with the actual
values. After this step, the script is executed.

6 Implementation and enforcement

In this section, we show how the PreparedJS scheme can be practically realized.
In this context, we propose a native, browser-based implementation (see Sec. 6.1)
and discuss how backwards compatibility can be provided for browsers that are
not able to handle PreparedJS’s template format natively (see Sec. 6.2).

6.1 Native, browser-based implementation

As mentioned earlier, the main motivation behind PreparedJS is to fill the last
loopholes that the current CSP approach still leaves for adversaries to inject



JavaScript into vulnerable Web applications. For this reason, we envision a na-
tive, browser-based implementation of PreparedJS as an extension of CSP.

To execute JavaScript and enforce standard CSP, a Web browser already
implements the vast majority of processes which are needed to realize our scheme,
namely HTML/script parsing and checking CSP compliance of the encountered
scripts. Hence, an extension to support our scheme is straight forward:

Whenever during the parsing process a script-tag is encountered, the script’s
URL is tested, if it complies with the site’s CSP policy. Furthermore, if the pol-
icy contains script checksums for the URL’s host, the checksum for the script’s
source code is calculated and it is verified, that the checksum is included in the
list of legitimate scripts.

In case of PreparedJS templates, first the template code is parsed by the
browser’s JavaScript parser, treating the placeholders as regular data tokens.
Only after the parse tree of the script is established, the placeholders are ex-
changed with the actual data values contained in the value list. This way, re-
gardless of their content, these values are unable to alter the script’s syntactic
structure, hence, no code injection attacks are possible.

Prototypical implementation for Google Chrome: To gain insight in practically
using PreparedJS’s protection mechanism and experiment with the templating
format, we conducted a prototypical implementation of the approach in the form
of a browser extension for Google Chrome.

Chrome’s extension model does not allow direct altering of the browser’s
HTML parsing or JavaScript execution behavior. Hence, to implement Prepared-
JS we utilized two capabilities that are offered by the extension model: The
network request interception API, to examine all incoming external JavaScripts,
and the extension’s interface to Chrome’s JavaScript debugger, to insert the
compiled PreparedJS-code into the respective script-tags.

When active, the extension monitors all incoming HTTP responses for CSP
headers. If such a header is identified, the extension extracts all contained Pre-
paredJS-checksums and intercepts all further network requests that are initiated
because of src-attribute in script tags in the corresponding HTML document.
Whenever such a request is encountered, the extension conducts two actions:
First, the actual request is redirected to a specific JavaScript, that causes the
corresponding JavaScript threat to trap into Chromes’s JavaScript debugger
via the debugger statement, causing the JavaScript execution to briefly pause
until the script legitimacy checking has concluded. Furthermore, the request’s
original URL is used to retrieve the external JavaScript’s source code, or, in in
the presence of a pjs-src-attribute, the PreparedJS-template and value list the
extension.

For the retrieved source code or the PreparedJS-template the cryptographic
checksum is calculated using the SHA256 implementation of the Stanford Java-
Script Crypto Library3. If the resulting checksum was not contained in the site’s
CSP policy, the process is terminated and the script’s source code is blanked out.

3 Stanford JavaScript Crypto Library: http://crypto.stanford.edu/sjcl/



Site Scriptsa LoCb Defaultc Debuggerd PJSe Overhead

local testpagef 2 3624 67.9 ms 230.6 ms 309.8 ms 79 ms
mail.google.com 5 16132 2184.5 ms 2542.8 ms 2691.4 ms 148.6 ms
twitter.com 2 9195 1686.0 ms 2058.8 ms 2112.8 ms 54 ms
facebook.com 18 31701 2583.8 ms 4067.5 ms 4189.0 ms 121.5 ms
a: Number of external scripts contained in the page, b: Total lines of JS code after de-minimizing,

c: loadtime without extension, d: loadtime with extension (debugger only, no script processing),

e: load time with full PreparedJS functionality on all external scripts. f : Testpage with PreparedJS

template, served from the same machine as the test browser

Table 1. Performance of the browser extension, mean values over 10 iterations

If the checksum was found in the policy, the script is allowed to be executed.
In case of a PreparedJS-template, the template is parsed and the items of the
value-list are inserted in the marked positions. To re-insert the resulting script
code into the Web page, the extension uses Chrome’s JavaScript debugger and
the Javascript execution is resumed.

Performance measurements: Using our prototypical implementation, we con-
ducted measurements to gain first insight into the runtime characteristics of the
proposed mechanism. For several reasons, the obtained results can be regarded
as a worst case measurement: For one, the full implementation, including the
template parsing and the checksum calculation, is done in JavaScript instead of
native code, resulting in implementations with inferior performance compared
to native code. Furthermore, the Chrome extension model made it necessary to
repeatedly conduct costly context-switches into Chrome’s debugger.

As it can be seen in Table 1, we conducted three separate measurements of
page load times: Without the extension, with the PreparedJS extension, and
with an “empty” extension that neither processes the script code nor calculates
checksums but traps into the debugger and conducts the network interception
steps. This was done to be able to distinguish between the performance cost that
is caused by the limitations of Chrome’s extension model, i.e., the script redirec-
tion and context-switches into the debugger, and the effort that is caused by the
actual PreparedJS functionality, namely the calculation of the script checksum
and the parsing of the JavaScript code. As the former only occurs because of the
implementation method’s limitiations and won’t occur in a native integration in
the browser’s CSP implementation, only the additional performance overhead
of the latter measurement is relevant in estimating PreparedJS’s actual cost (as
reflected in the table). To conduct the actual measurements we utilized the Page
Benchmarker4 extension, using mean values of ten page load iterations over a
standard German household DSL line. During the tests, all encountered external
JavaScripts were treated, as if they were PreparedJS-templates and, thus, fully
parsed and checksummed.

4 Page Benchmarker: https://chrome.google.com/webstore/detail/

page-benchmarker/channimfdomahekjcahlbpccbgaopjll



In general, we do not expect the PreparedJS approach to cause noticeable
performance overhead (an estimate that is backed by the performance evalua-
tion): PreparedJS only takes effect during the initial script parsing steps. Here
three new steps are introduced, that do currently not exist. The cryptographic
checksum has to be calculated, value list has to be parsed, and the obtained
values have to be inserted for the placeholders. Non of these steps requires con-
siderable computing effort: Modern hash-functions are highly optimized to per-
form very well, the browser’s JavaScript engine has already native capabilities
for parsing the JSON-formated value list, and inserting the data values after the
script parser’s tokenization step is straight foreword and does not require so-
phisticated implementation logic. From here on, the browser’s actual JavaScript
execution functionality remains unchanged. After script parsing, a PreparedJS
script is indistinguishable from a regular JavaScript and all recent performance
increases of modern JavaScript engines apply unmodified.

6.2 Transparently providing legacy support

As mentioned in Section 5.4, providing a second, backwards compatible version
of all scripts can cause considerable additional development and maintenance
effort. This in turn might hinder developer acceptance of the measure.

However, providing a backwards compatible version of scripts that only ex-
ist in the PreparedJS format can be conveniently achieved with a server-side
composition service: Such a service compiles the script-template together with
the value list on the fly, before sending the resulting JavaScript to the browser.
For this purpose, the service conducts the exact same steps as the browser in
the native case (see Fig. 1): It retrieves the template, the value-list, and the list
of whitelisted checksums from the Web server. Then it calculates the templates
checksum and verifies that the script is indeed in the whitelist. Then it parses
the value list and inserts the resulting values into the template in place of the
corresponding value identifiers.

Please note: The actual script compiling process has to be carefully imple-
mented to avoid the reintroduction of injection vulnerabilities. For this, the data
values have to be properly sanitized, such that they don’t carry syntactic content
which could alter the semantics of the resulting JavaScript.

Taking advantage of the composition service, the script-tags of the appli-
cation can reference the script in its PreparedJS form directly (via the pjs-src-
attribute) and utilize a specific URL-format for the legacy src-attribute, which
causes the server-side to route request through the composition service. For in-
stance, this can be achieved through a reserved URL-parameter which is added
to the scripts URL, such as ?pjs-prerender=true. All requests carrying this
parameter automatically go through the composition service.
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Fig. 1. Native browser support (top), backwards compatibility via server-side compo-
sition service (bottom)

7 Discussion

7.1 Security evaluation

In this section, we verify that PreparedJS indeed closes CSP’s existing protection
gaps, as identified in Section 3.

(1) Insecure server-side assembly of JavaScript code: Vulnerabilities,
such as discussed in Section 3.1 and shown in Lst. 2 and 3, cannot occur if
PreparedJS is in use. The cryptographic checksum of dynamically assembled
scripts vary for every iteration, hence, the checksumming validation step will
fail, as the script’s checksum won’t be included in the site’s CSP policy (see
below for a potential limitation, in case the scheme is used wrongly).
The introduction of the PreparedJS templates offers a reliably secure alter-
native to insecure server-side script assembly via string concatenation. As
the script’s syntactic structure is robustly maintained through preparsing in
the browser, before the potentially untrusted data values are inserted, XSS
vulnerabilities are rendered impossible, even in cases in which the attacker
controls the dynamic values.

(2) Full control over external, whitelisted script-sources: The mecha-
nism’s fine-grained checksum whitelisting reliably prevents this attack. Due
to the checksum checking step, the attacker cannot leverage a compromised
external host or related weaknesses. If he attempts to serve altered script
code from the compromised origin this code’s checksum won’t appear in the
policy’s list of permitted scripts. Hence, the browser will refuse to execute
the adversary’s attack attempt.

(3) Attacker provided src-attributes in script-tags: Our proposed CSP
syntax allows for finer-grained control, which scripts are allowed to run in
the context of a given Web page. Hence, each page can exactly specify which
scripts it really requires, leaving the adversary only minimal opportunities
to combine script side effects to his liking. This is especially powerful, when



it comes to script inclusion from large scale external service providers, such
as Facebook or Google, from which, in most cases, only dedicated scripts
are needed for the site to function. Take for example analytics services: If
a site utilizes the product Google Analytics5, currently all scripts hosted
on Google’s domain have to be allowed by the CSP policy. This provides
the attacker with a lot of potential options under the scenario outlined in
Sec. 3.3. Using our extended policy mechanism, it is ensured that only the
required analytics script will be executed by the browser.

Limitation – Checksumming of insecurely assembled code: Apparently, if a de-
veloper creates an application which first insecurely creates dynamic script code
and only after this step creates the checksums and CSP policies, the introduced
protection measure can be circumvented. However, it is easy to enforce develop-
ment and deployment processes that prevent such a scenario: The CSP policy
generation (which requires a full set of calculated checksums) has to be decoupled
from the parts of the application that handles potentially untrusted data. For
instance, a requirement that decrees that all script checksums are calculated on
deploy-time of the application and remain stable during execution would resolve
the issue.

7.2 Cost of adoption

Before the introduction of CSP, a mechanism like PreparedJS would have been
infeasible, due to the highly flexible nature of the Web: JavaScript can be inserted
on many places within a Web page’s markup, e.g., through numerous inline
event handlers or JavaScript-URLs. Creating templates and code checksums for
each of these mini-scripts would cause very high development and maintenance
overhead, which in turn would hinder the mechanisms acceptance.

However, CSP policies already impose considerable restrictions on how Java-
Script is used within Web applications. Thus, to adopt the PreparedJS mech-
anism on top, is only a small further step and the needed effort appears to be
manageable: Strong CSP policies requires all JavaScript to be delivered by ded-
icated HTTP responses. Hence, script code is already cleanly separated from
HTML markup. In result, the total number of to be handled scripts for CSP-
enabled sites will be much smaller. Also, this clean separation of the script-code
from the markup eases the task of identifying the to-be signed code and creating
the actual code checksums considerably. We expect for a sanely designed Web
site that the majority of its JavaScript sources are contained in a limited number
of dedicated places within the application structure (such as a /js-path).

Starting with an enumerable set of dedicated paths in which the scripts reside,
the task to separate the script’s dynamic code insertion routines from the main
static script content is straight forward.

5 Google Analytics: http://www.google.com/intl/de/analytics/



8 Related work

Server-side XSS prevention: Preventing and mitigating Cross-site Script-
ing attacks has received considerable attention. Most documented methods aim
to fight XSS through preventing the actual code injection. They approach the
problem, for instance, via tracking untrusted data during execution [20, 15, 3],
enforcing type safety [21, 8, 9], or providing integrity guarantees over the doc-
ument structure [11, 14]. As a general observation, it can be stated, that these
approaches have to address a wide range of potential attack variants and injec-
tion vectors, thus, requiring extensive browser/server infrastructure or significant
changes on the server-side. In comparison, the scope of PreparedJS’s templating
mechanism is much more focussed on one specific problem, hence, allowing for
a concise solution that effectively can leverage the existing CSP infrastructure.

Client-side techniques: Furthermore, conceptional close to out approach
is BEEP [7], which proposes whitelisting of static scripts using cryptographic
checksums. Similar to our approach, a JavaScript’s checksum is calculated and
verified, before the script is executed. In comparison to our approach, BEEP
does not consider server-side script assembly. Instead, they propose runtime cal-
culation of the server-side checksums. Hence, the protection characteristics of
BEEP do not significantly surpass CSP’s capabilities while requiring a consider-
ably different enforcement architecture. Our approach only requires a extension
to the browser’s CSP handling. Furthermore, several approaches exist that aim
to restrict JavaScript execution in general, through applying fine-grained se-
curity policies that enforce least privilege measures on script code [13, 1]. In
certain cases, such techniques can be utilized to soften the effect of successful
XSS attacks. However, their primary focus is at runtime control over third party
JavaScript components. Due to this focus, the provided means of these tech-
niques are not sufficient to reach the protection coverage of CSP (and, thus,
of PreparedJS). Finally, more techniques exist, that explicitly aim to prevent
the execution of XSS payloads. Most prominent in this area are browser-based
XSS filters, which are currently provided by Webkit-based browsers [2], Internet
Explorer [22], and the Firefox extension NoScript [12].

Script-less attacks: In [6] Heiderich et al. discuss XSS payloads that do
not rely on JavaScript execution. Instead, the presented attacks function via the
injection of HTML markup and CSS. The primary goal of these attacks is data
exfiltration, i.e., transmitting sensitive information, such as credit card numbers
or passwords, to the adversary. While CSP’s unsafe-inline also restricts in-
line CSS declarations, such attacks are generally out of reach for our proposed
technique. PreparedJS sole focus is on secure JavaScript generation and tight
control over which scripts are allowed to be executed. A generalization towards
HTML markup or CSS is neither planned nor realistic.

9 Conclusion

The Content Security Policy mechanism is a big step forward to mitigate XSS
attacks on the client-side. Unfortunately, CSP is not bulletproof. In this paper,



we identified three distinct scenarios in which a successful XSS attack can occur
even in the presence of a strong CSP. Based on this motivation, we presented
PreparedJS, an extension to CSP which addresses the identified weaknesses:
Through safe script templates, PreparedJS removes the requirement of unsafe
server-side JavaScript assembly. Furthermore, using script checksums, Prepared-
JS allows fine grained control via whitelisting specific scripts. The combination
of these two capabilities with the base-line protection provided by CSP, full
protection against XSS attacks can be achieved in a robust fashion.

Acknowledgments This work was in parts supported by the EU Projects
STREWS (FP7-318097) and WebSand (FP7-256964). Furthermore, we would
like to thank anonymous reviewers for their helpful comments.

References

1. Steven Van Acker, Philippe De Ryck, Lieven Desmet, Frank Piessens, and Wouter
Joosen. WebJail: Least-privilege Integration of Third-party Components in Web
Mashups. In Proceedings of the ACSAC 2011 conference, 2011.

2. Daniel Bates, Adam Barth, and Collin Jackson. Regular expressions considered
harmful in client-side XSS filters. In WWW, 2010.

3. Prithvi Bisht and V. N. Venkatakrishnan. Xss-guard: Precise dynamic prevention
of cross-site scripting attacks. In DIMVA, pages 23–43, 2008.

4. CERT/CC. CERT Advisory CA-2000-02 Malicious HTML Tags Embedded in
Client Web Requests. [online], http://www.cert.org/advisories/CA-2000-02.
html (01/30/06), February 2000.

5. D. Crockford. The application/json Media Type for JavaScript Object Notation
(JSON). RFC 4627, http://www.ietf.org/rfc/rfc4627.txt, July 2006.

6. Mario Heiderich, Marcus Niemietz, Felix Schuster, Thorsten Holz, and Jörg
Schwenk. Scriptless attacks: stealing the pie without touching the sill. In ACM
Conference on Computer and Communications Security, 2012.

7. Trevor Jim, Nikhil Swamy, and Michael Hicks. Defeating Script Injection Attacks
with Browser-Enforced Embedded Policies. In WWW2007, May 2007.

8. Martin Johns. Code Injection Vulnerabilities in Web Applications - Exemplified at
Cross-site Scripting. PhD thesis, University of Passau, 2009.

9. Martin Johns, Christian Beyerlein, Rosemaria Giesecke, and Joachim Posegga.
Secure Code Generation for Web Applications. In 2nd International Symposium
on Engineering Secure Software and Systems (ESSoS ’10). Springer, 2010.

10. Amit Klein. DOM Based Cross Site Scripting or XSS of the Third
Kind. [online], http://www.webappsec.org/projects/articles/071105.shtml,
(05/05/07), Sebtember 2005.

11. Mike Ter Louw and V.N. Venkatakrishnan. BluePrint: Robust prevention of Cross-
site Scripting Attacks for Existing Browsers. In IEEE Symposium on Security and
Privacy (Oakland’09), May 2009.

12. Giorgio Maone. NoScript Firefox Extension. [software], http://www.noscript.
net/whats, 2006.

13. Leo A. Meyerovich and V. Benjamin Livshits. Conscript: Specifying and enforcing
fine-grained security policies for javascript in the browser. In IEEE Symposium on
Security and Privacy, pages 481–496. IEEE Computer Society, 2010.



14. Yacin Nadji, Prateek Saxena, and Dawn Song. Document Structure Integrity: A
Robust Basis for Cross-site Scripting Defense. In NDSS 2009, 2009.

15. A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans. Automatically
hardening web applications using precise tainting. In 20th IFIP International
Information Security Conference, May 2005.

16. Nick Nikiforakis, Luca Invernizzi, Alexandros Kapravelos, Steven Van Acker,
Wouter Joosen, Christopher Kruegel, Frank Piessens, and Giovanni Vigna. You
Are What You Include: Large-scale Evaluation of Remote JavaScript Inclusions.
In CCS 2012, 2012.

17. Nick Nikiforakis, Wannes Meert, Yves Younan, Martin Johns, and Wouter Joosen.
SessionShield: Lightweight Protection against Session Hijacking. In ESSoS 2011,
February 2011.

18. Open Web Application Project (OWASP). OWASP Top 10 for 2010 (The Top
Ten Most Critical Web Application Security Vulnerabilities). [online], http://

www.owasp.org/index.php/Category:OWASP_Top_Ten_Project, 2010.
19. Open Web Application Project (OWASP). XSS (Cross Site Scripting) Pre-

vention Cheat Sheet. [online], https://www.owasp.org/index.php/XSS_(Cross_
Site_Scripting)_Prevention_Cheat_Sheet, last accessed 12/03/12, 2012.

20. Tadeusz Pietraszek and Chris Vanden Berghe. Defending against Injection Attacks
through Context-Sensitive String Evaluation. In Recent Advances in Intrusion
Detection (RAID2005), 2005.

21. W. Robertson and G. Vigna. Static Enforcement of Web Application Integrity
Through Strong Typing. In Proceedings of the USENIX Security Symposium, Mon-
treal, Canada, August 2009.

22. David Ross. IE 8 XSS Filter Architecture / Implementation.
[online], http://blogs.technet.com/b/srd/archive/2008/08/19/

ie-8-xss-filter-architecture-implementation.aspx, last accessed 05/05/12,
August 2008.

23. Jesse Ruderman. The Same Origin Policy. [online], http://www.mozilla.org/

projects/security/components/same-origin.html (01/10/06), August 2001.
24. Theodoor Scholte, Davide Balzarotti, and Engin Kirda. Have things changed now?

an empirical study on input validation vulnerabilities in web applications. Com-
puters & Security, 31(3):344–356, 2012.

25. Sid Stamm, Brandon Sterne, and Gervase Markham. Reining in the web with
content security policy. In WWW, 2010.

26. The webappsec mailing list. The Cross Site Scripting (XSS) FAQ. [online], http:
//www.cgisecurity.com/articles/xss-faq.shtml, May 2002.

27. Ben Toews. Abusing Password Managers with XSS. [online], http://

labs.neohapsis.com/2012/04/25/abusing-password-managers-with-xss/, last
accessed 05/05/2012, April 2012.

28. Philipp Vogt, Florian Nentwich, Nenad Jovanovic, Christopher Kruegel, Engin
Kirda, and Giovanni Vigna. Cross Site Scripting Prevention with Dynamic Data
Tainting and Static Analysis. In NDSS 2007, 2007.

29. W3C. Content Security Policy 1.0. W3C Candidate Recommendation, http:

//www.w3.org/TR/2011/WD-CSP-20111129/, November 2012.
30. W3C. Content Security Policy 1.1. W3C Editor’s Draft 02, https://dvcs.w3.org/

hg/content-security-policy/raw-file/tip/csp-specification.dev.html,
December 2012.

31. Michal Zalewski. Postcards from the post-XSS world. [online], http://lcamtuf.
coredump.cx/postxss/, December 2011.


