
Protecting Users Against XSS-based Password Manager
Abuse

Ben Stock
FAU Erlangen-Nuremberg
ben.stock@cs.fau.de

Martin Johns
SAP AG

martin.johns@sap.com

Abstract
To ease the burden of repeated password authentication on
multiple sites, modern Web browsers provide password man-
agers, which offer to automatically complete password fields
on Web pages, after the password has been stored once.
Unfortunately, these managers operate by simply inserting
the clear-text password into the document’s DOM, where
it is accessible by JavaScript. Thus, a successful Cross-site
Scripting attack can be leveraged by the attacker to read and
leak password data which has been provided by the pass-
word manager. In this paper, we assess this potential threat
through a thorough survey of the current password manager
generation and observable characteristics of password fields
in popular Web sites. Furthermore, we propose an alterna-
tive password manager design, which robustly prevents the
identified attacks, while maintaining compatibility with the
established functionality of the existing approaches.

Categories and Subject Descriptors
K.6.5 [Security and Protection]: Unauthorized access;
H.4.3 [Communications Applications]: Information
browsers

Keywords
Cross-site Scripting, XSS, Passwords, Password Managers,
Countermeasure, Web Security

1. INTRODUCTION
In this section, we present the motivation behind our work

and give a short outlook on the remainder of the paper.

1.1 Motivation
Passwords are the primary authentication method of the

Web. With the growing set of Web applications that enter
our life, the number of utilized passwords rises continuously.
Security’s best practices dictate, that each password should
be sufficiently hard to guess and unique for the respective

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
ASIA CCS ’14 June 03 - 06 2014, Kyoto, Japan
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM ACM 978-1-4503-2800-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2590296.2590336 .

site, to limit dangers that arise from password reuse and
guessing attacks. However, due to the traits of human na-
ture, our capacities for remembering large sets of good pass-
words are limited, which in turn evidently leads to violation
of the aforementioned password discipline [18, 13].

To provide assistance in this matter, password managers
were introduced, that store passwords for the user and offer
to (semi)automatically enter them into the matching pass-
word dialogues. Nowadays, all popular Web browser pro-
vide built-in password managers. Unfortunately, these man-
agers operate by simply inserting the clear-text password
into the document’s DOM, where it is accessible by Java-
Script. Thus, a successful Cross-site Scripting (XSS) attack
can be leveraged by the attacker to read and leak password
data which has been provided by the program.

Cross-Site Scripting is one of the most common security
issues on the Web. The Open Web Application Security
Project (OWASP) regularly lists XSS as one of the top three
security vulnerability problems on the Web [24] and in its
yearly analysis report [27], Whitehat Security lists XSS vul-
nerabilities documents that 43% of all discovered serious vul-
nerabilities can be accounted to XSS.

Thus, XSS-driven, automated password stealing attacks
appear to be a realistic threat. In this paper, we assess the
susceptibility of the current password (manager) landscape
and propose a lightweight countermeasure, that robustly
prevents the identified attacks, while maintaining compati-
bility with the established functionality of the existing ap-
proaches.

1.2 Contribution and Paper Outline
After providing the required technical background (Sec. 2),

we make the following contributions:

• We give a comprehensive overview on potential XSS-
based attack patterns on browser-provided password
managers (Sec. 3) and explore potential mitigation stra-
tegies, that can be realized with the currently available
technology (Sec. 4).

• We present two systematic studies: For one, we exam-
ine the current generation of existing password man-
agers and show their susceptibility to the outlined at-
tacks. Furthermore, we report on a large-scale study
on the Alexa Top 4000 site, in which we studied how
password fields are used by popular Web sites (Sec. 5).

• Motivated by the gained insights, that the vast major-
ity of password scenarios are indeed vulnerable to the

identified attacks, and that the currently available mit-
igation strategies are insufficient, we propose a client-
side countermeasure, which robustly protects against
XSS-based password theft without changing the gen-
eral interaction scheme between user, Web page and
password manager. Using a prototypical implemen-
tation as a Firefox extension, we practically evaluate
our solution’s security and functionality characteristics
(Sec. 6).

We end the paper with a discussion of related work (Sec. 7)
and a conclusion (Sec. 8).

2. TECHNICAL BACKGROUND
In the following, we give a brief technical background on

password managers and the concepts of Cross-Site Scripting.

2.1 Password Managers
As studies [18, 13] have shown, users tend to choose bad

passwords and/or reuse passwords over multiple sites, there-
fore undermining the security of their login credentials. To
support users in employing a more secure password strategy,
browser vendors as well as third party programmers have
implemented password managers capable of storing these
secret credentials for the users. This allows users to choose
more complex and possibly random passwords by lifting the
burden of remembering numerous complicated passwords.
Hence, password managers can be beneficial for supporting
better security practices in password handling.

Current implementations of password managers in browsers
all work in a similar manner. Just before a form is submit-
ted, the form is checked for password fields. If any such field
exists, the username and password fields are determined and
their values are subsequently extracted. These extracted
credentials are then – along with the domain they were en-
tered into – passed to the password manager. The password
manager’s database is subsequently checked for a matching
entry, whereas no action is taken if the extracted credentials
already match the stored ones. If, however, no matching
entry is found, the user is prompted to approve storing of
the password data. Analogously to that, if an entry for the
same username but different password is found, the user is
prompted to consent to updating the stored data. This pro-
cess only works with forms that are submitted, either by
the user clicking a submit button or by JavaScript invoca-
tion of the submit() method of that form. According to
Mozilla [6], storing passwords which are sent using Java-
Script XMLHttpRequests is not supported since no actual
submission of the form takes place.

For each page containing a username and password field,
the password manager is queried for entries matching the
URL (or domain, depending on the implementation). If an
entry is found, the fields on that page are automatically filled
with the previously persisted credentials. Hence, the user
then only has to submit the form to log into the application.

2.2 Cross-site Scripting
In the Web, access from a document to another docu-

ment’s content is governed by the Same-Origin Policy [2].
This policy makes sure that interaction between two docu-
ments may only occur if their origins match. An origin in
this sense is the combination of protocol, domain and port
of the interacting resources. Hence, an attacker, hosting his

code on his own page, cannot directly access the content of,
e.g., Google Mail even if the visitor of the page is logged
in to that service. In the Web context, the term Cross-Site
Scripting (XSS) is used for a class of attacks that allow an
attacker to inject HTML or script code into a vulnerable
Web application. This code is then executed in the con-
text and, thus in the origin of the vulnerable application. In
our example, this would mean that the code would be exe-
cuted in the origin of Google Mail, thus allowing it to read
arbitrary content from the site. Hence, Cross-Site Script-
ing can be seen as a way of circumventing the Same-Origin
Policy. Cross-Site Scripting attacks are typically classified
into three categories, namely persistent, reflected and DOM-
based XSS. The first term adheres to the fact that the attack-
ers code is persistently stored in an application’s database,
where in the second case, data provided to the application
– e.g. via the URL – is reflected back into the response,
allowing for malicious code to be executed. The third kind,
which was first described by Amit Klein [15] in 2005 and – in
contrast to the previously outlined attacks – abuses client-
side code vulnerabilities. Although it was first discussed in
2005, DOM-based XSS still appears to be a major threat
as Lekies et al. [16] recently showed by finding DOM-based
XSS vulnerabilities on 9.6% of the Alexa top 5000 sites.

3. ATTACKS
In this section, we discuss the general attack pattern us-

able for stealing passwords via Cross-Site Scripting vulner-
abilities and follow up with means of leveraging password
managers to automate these kinds of pattacks. Afterwards,
we give an overview of specific attack scenarios aiming to ex-
tract credentials from password managers and conclude the
section with a related, active network-based attacker model.

3.1 Stealing passwords with XSS
Cross-Site Scripting gives an attacker ample opportunity

to steal secret data from his victim. Typically, login forms
for Web applications are realized using two input fields,
which the user fills with his username and password, respec-
tively. By design, JavaScript may interact with the docu-
ment and thus is also capable of accessing the username and
password field. This feature is often used by applications
to verify that certain criteria are met – such as checking
for e-mail addresses. However, this functionality also allows
an attacker to retrieve the credentials utilizing Cross-Site
Scripting. If the attacker can successfully inject his own
JavaScript code into the login page, that code can extract
the credentials entered by the user and subsequently leak
them back to the attacker. This kind of vulnerability obvi-
ously only works if the user is not yet logged in when clicking
on the crafted link. However, this is where password man-
agers come to the aid of the attacker, as we will discuss in
the following.

3.2 Leveraging Password Managers to Auto-
mate Attacks

Password managers provide a convenient way for users to
automate parts of logins into Web applications. To make the
login as simple and comfortable as possible, they automat-
ically pre-fill forms for which the user stored the password
beforehand. This feature can be exploited by a Cross-Site
Scripting attacker. If a site is susceptible to XSS attacks,

the adversary can inject his own code into the application’s
login form in a similar manner as described earlier.

However, the attacker no longer needs to wait for the form
filled by the user, since the password manager auto-fills the
required fields. The attacker’s code can then automatically
retrieve the information and leak it back to the attacker.
The biggest advantage in comparison to the aforementioned
attack is the fact that the user does not need to be involved
at all. This process can – depending on the browser – be
fully automated in a hidden frame while the user is looking
at a seemingly innocent page.

Figure 1 shows this process. First, when the login page is
initially loaded, the fields are both empty. In the next step,
the password manager automatically fills in the username
and password, which can be subsequently retrieved by the
code the attacker injected. The password is then automat-
ically leaked back to the attacker as depicted in the lower
part of the figure.

3.3 Specific Attack Patterns
In terms of Cross-Site Scripting, an attack targeting pass-

word managers specifically aims at extracting the stored user
credentials in an automated way. The attacker therefore
tries to embed a form into a vulnerable application which
is then filled in by the password manager. This form can
afterwards be read by the attacker’s JavaScript code to re-
trieve the data that was inserted by the victim’s browser
and eventually leak the information back to the attacker.

In our study of current password manager implementa-
tion, which we will discuss in further detail in Section 5.1,
we found that their behavior could be distinguished in four
dimensions. In the following, we will discuss the discrimi-
nating factors and the attack patterns associated with them.

Matching requirements for the URL and form.
The first factor we examined was the way in which pass-

word managers react to changes both to the URL and the
form itself. Password managers often fill passwords regard-
less of the context, as long as the domain matches, and,
potentially, other easily fabricated indicators such as field
names and types or form action are present.

When a password manager does not explicitly store the
complete form the credentials were stored for, but rather
only the origin, an attacker can easily extract the creden-
tials. To achieve this, he can abuse a Cross-Site Scripting
vulnerability on an arbitrary part of the application to in-
ject his form and corresponding JavaScript code. This form
is then filled by the password manager and the stolen data
can be sent to the attacker. In cases where a password man-
ager also does not store the names of the fields the data was
stored from, the attack is even easier since an attacker does
not need to craft a form specifically mimicking the login page
of the target application, but may use a generic form. This
allows him to automate the attack for multiple vulnerable
pages in a very simple and almost effortless manner.

Viewports.
If a password manager explicitly checks the URL rather

than the origin, the attacker has to force the victim’s browser
to load the original login page to make the password man-
ager fill out all the relevant fields. Hence, the second crite-
rion we found is the difference in handling viewports. In our
notion, a viewport can either be a top frame, a sub frame

or a popup window. With respect to that, the interesting
question is whether a password manager still fills out forms
if they are not located in the top frame of a page.

If login field data is inserted regardless of the viewport,
an adversary can place a hidden frame pointing to the login
page on the vulnerable page. As enforced by the Same-
Origin Policy, any page may only access another document’s
content and resources if the protocol, the domain and the
port of both involved documents match. As we assume the
attacker has control over some page inside the vulnerable
Web application, he can therefore access the aforementioned
frame’s content, thus enabling extraction of the credentials
that were filled in by the password manager. If a password
manager does not automatically fill in the values of interest
to the attacker, or the application itself forces not to be
framed using the X-Frame-Options header [19], the login
page can be opened in a popup window. Still operating
under the assumption that vulnerable and login page are of
the same origin, the attacker’s code can retrieve the data
from the opened popup.

User interaction.
As a third distinguishing feature of the examined pass-

word managers, we identified user interaction – i.e. whether
the user has to somehow interact with the password manager
before it fills out the forms, e.g., via clicking or typing into
the password field. If a given password manager requires
such interaction, fully automated XSS password stealing at-
tacks are not feasible.

However, in such cases, an attacker can attempt to con-
duct a ClickJacking [26] attack. ClickJacking attacks work
by tricking the user to interact with a security sensitive Web
UI without his knowledge. In the general attack case, the ad-
versary loads the document which contains the security sen-
sitive UI into an iframe and hides the frame from the user’s
eyes via CSS properties, such as opacity. Subsequently, he
overlays the targeted (and now invisible) UI elements with
unsuspicious elements and motivates the user to click them,
for instance in the context of a game or a competition. If the
user falls for the adversary’s bait, he involuntary interacts
with the hidden UI.

Using this attack, the adversary can trick the victim to
interact with the password field in the required fashion, thus,
causing the password manager to fill the field with the stored
value.

Adherence to the autocomplete attribute.
The fourth and last dimension we found was the adherence

to the autocomplete attribute for fields. According to the
W3C standard [12], a browser must not store data that is
inserted into input fields which have autocomplete set to
off.

From the attacker’s point of view, this feature is very
interesting. If a password manager does not respect the
autocomplete value when storing the credentials but only
when later filling out the input fields, it is still susceptible
to attacks. In order to extract password data from clients,
the adversary can simply add a second form with the same
names and input types to the document, this time without
the autocomplete attribute, which is then filled with the
persisted credentials.

Password Manager

Attacker Code

Figure 1: Process of leveraging the password manager to steal stored credentials

In Section 5, we will discuss in detail how the browsers
that we examined behaved with respect to the aforemen-
tioned four dimensions.

3.4 Network-based attacks
In concurrent and independent work, Gonzalez et al. [9]

discovered a related attack. However, in contrast to our at-
tacker model, their attacker is located in the network and
can thus introduce content into every site of his choosing.
They developed a tool called Lupin which automatically in-
jects iframes for each site they want to steal credentials from
and then extracts the inserted data. However, if we assume
that the attacker cannot produce a valid TLS certificate for
any domain he wants to extract data from, this attacker can
only steal login data from sites that do not use HTTPS to
serve their login form. Thus, this attack scenario can be
thwarted if all pages use strict HTTPS for both the login
form and the URL the data is then sent to. Although this
attacker model is not the focus of our work, we evaluate the
suspecibility of current Web applications to these attacks in
Section 5.

4. MITIGATION STRATEGIES
Before presenting our solution approach in Section 6, we

briefly discuss existing remedies and potential techniques,
which could be applied by application providers and end
users.

4.1 Server-side Mitigation
Several approaches exist, which could be adopted by Web

application providers to protect their users against the pre-
sented attacks. However, as we will discuss, each of these
techniques comes with certain drawbacks.

Switching to alternative authentication methods.
Instead of relying on form-based authentication, which

is susceptible to XSS attacks due to the fact that injected
JavaScript can access the value of the password field, Web
application providers could switch to authentication pro-
cesses that utilize credentials which are out of the adver-
sary’s reach:

• HTTP authentication: HTML forms are not the only
available user interface component for password entry
offered by Web browsers. If a Web application’s server
side requires HTTP authentication, signaled through
a 401 HTTP response [7], the user is presented with a
dedicated authentication dialog, which is realized with
UI components that are outside of the current docu-
ment’s DOM, and hence, out of reach for a JavaScript

attacker. Unfortunately, HTTP authentication is cum-
bersome to integrate the general workflow of Web ap-
plications: Form data is pushed by the browser to the
server on form submit, while HTTP authentication is
pulled, after the server notices an attempt to access
restricted information. Mixing the two paradigms po-
tentially leads to incoherent and confusing end user
interfaces.

• Client-side SSL authentication: Instead of using pass-
words, the application could switch to public key au-
thentication. Authenticating via client-side SSL cer-
tificates [5] is well supported by the browser’s SSL/TLS
implementation. However, such certificates have sig-
nificant disadvantages over passwords in respect to de-
ployment (the application needs to outfit all users with
valid certificates), usability (handling browser-based
certificates is well out of the expertise of the average
Web end user), and portability (the certificates are en-
rolled in the browser, switching browsers or computers
requires certificate migration).

Moving password forms to a dedicated sub domain.
Furthermore, to mitigate the outlined threat, sites could

leverage the Same-Origin Policy’s protection capabilities.
If all password handling forms, and only these forms, are
hosted on a dedicated (sub)domain, XSS vulnerabilities of
the main application won’t compromise the password’s se-
curity. The injected JavaScript is executed under an origin
that differs from the origin of the password-hosting docu-
ment, hence, the JavaScript has no access to the field. Fur-
thermore, the password manager stores the password for the
domain value of the dedicated (sub)domain, thus, injecting
further password fields into the document of the injected
JavaScript has no effect, as no password has been stored
for this document’s origin in the first place. For apparent
reasons, choosing this path comes with the price of elevated
setup, deployment, and maintenance costs for the applica-
tion provider (e.g., valid SSL certificates for the subdomain
need to be acquired).

Disabling the password manager.
As covered earlier, using the HTML attribute autocom-

plete="off" [12], a Web application can prevent the browser
from storing the password in the first place. The reasoning
behind this is that the data, which is entered into fields
which have this attribute set to off, is particularly sen-
sitive and should therefore neither be stored nor inserted
later. While being secure against the outlined attacks, this
technique causes the loss of the usability advantage of the

password manager, which in turn (see Sec. 2.1) could lead to
situations in which end users potentially choose less secure
passwords.

4.2 End-user Protection
Currently, end-users have two options to protect them-

selves against XSS password theft:
For one, they can simply turn their browser’s password

manager off through switching the corresponding setting in
the browser’s configuration [21]. While this is certainly the
safest choice, the user looses both the functionality gain and
the potential security advantage (see Sec. 2.1) of using a
password manager.

The second option is to switch to a third-party password
manager that requires explicit user interaction. If explicit
user interaction, such as clicking a button, is a prerequisite
for the system to fill the password value, fully automatic
XSS-driven attacks are thwarted. Please note: It is crucial
to mention, that the UI component which triggers the re-
quired user interaction is positioned outside of the DOM of
the attacked page. Otherwise, the adversary can resort to
the ClickJacking attack variant (see Sec. 3.3) and undermine
the provided mitigation.

The primary focus of most third-party password managers
is on security and not on ease-of-use or transparency. For
instance, in it’s default configuration, 1Password1 requires
the pressing of a predefined key combination, followed with
the entry of the tool’s master password. Hence, they might
be not a viable option for end users that utilize password
managers foremost as a convenience feature.

5. EXPLORING THE PASSWORD
(MANAGER) LANDSCAPE

As explained above, several potential XSS attack patterns
on password managers exist. To examine the degree to which
these theoretic attacks are applicable with the currently de-
ployed password managers and Web sites, we conducted two
comprehensive studies. For one, we systematically examined
the built-in password managers of the current browser gen-
eration (see Sec. 5.1). Furthermore, we conducted a large
scale study on how password fields are used by existing ap-
plications (see Sec. 5.2).

5.1 Password managers
In this section we present the results of our experiments on

the behavior of different modern browsers. Our tests were
aimed in the four different dimensions previously discussed
in Section 3.3.

To ensure a broad coverage of internet users, we opted to
examine Google Chrome (version 31), Mozilla Firefox (ver-
sion 25), Opera (version 18), Safari (version 7), Internet Ex-
plorer (version 11) and the Maxthon Cloud Browser (version
3). Although the latter one might not be as well-known as
the other candidates, it is one of the options that is shown
to users installing the latest Windows versions. Hence, we
looked at the behavior of this browser along with the previ-
ously named.

Before investigating the behavioral changes when tamper-
ing with the form or the URLs the form was located in, we
first analyzed the general fill-in behavior of our test subjects
according to the specific attacks discussed in Section 3.3.

11Password: https://agilebits.com/onepassword

Filling only in the top frame.
To assess whether password managers would fill out forms

only in top frames, we created a page that framed the orig-
inal, unchanged login page we had initially stored our cre-
dentials for. Apart from Internet Explorer, which refused
to insert any data, all browsers filled in the username and
password field.

Explicit user interaction.
Next, we investigated whether a browser would actually

need any form of interaction from the user to fill in pass-
words. Again, Internet Explorer was the (albeit positive)
outlier, being the only browsing engine that required any
form of interaction. In Internet Explorer, the user has to
manually put the focus to the username field and is then pre-
sented with a dropdown menu allowing him to select which
credentials he wants to insert. The user then has explicitly
click on an entry to trigger the browsers fill-in action. Also,
this is done properly outside of the DOM, thus the Click-
Jacking attacker discussed in Section 3.3 can also not force
the filling of password fields.

URL matching.
We assume that the attacker wants to steal the creden-

tials from his victim in a stealthy manner. We consider the
following example: an application hosts its login at /login.
The attacker has found a XSS vulnerability at /otherpage

which he wants to abuse to steal the stored credentials.
Hence, if a password manager only supplies the password
to the exact URL it stored the passwords for, the attacker
would have to open a popup window or embed a frame to
the login page to steal the secret data. However, opening
a popup window is very suspicious and therefore not de-
sirable. Also, framing the login page in an invisible frame
might not work due to X-Frame-Options headers. In our
study, which we discuss in Section 6.3, we found that only
8.9% of login pages make use of this header to ensure that
they are not framed. Thus, in our work, we wanted to de-
termine how easy it was to make password managers fill in
the stored credentials into forms if the URL did not match
the one the password was originally stored for. To examine
the browsers’ behaviours, we created a simple Web appli-
cation with a login form. We visited this login and let the
password manager under investigation save the credentials
that we entered. We then created multiple other pages run-
ning under different protocol (HTTP vs. HTTPS), different
ports, different (sub-)domains as well as changing paths to
determine what the implemented matching criteria were for
all our test subjects. In the following, we discuss the results
of the analysis of the aforementioned browsers.

• Google Chrome: Our tests showed that changing the
protocol, sub domain or port lead to the password to
not be filled in anymore. In contrast, when visiting
a form running under a different path, Chrome still
inserted the stored credentials. This leads us to reason
that Chrome stores the password alongside their origin
in the sense of the Same-Origin Policy, namely the
triple protocol, domain and port.

• Our second candidate was Firefox. Similar to the be-
haviour Chrome exhibited, Firefox also refused to fill
out login fields if either protocol, (sub-)domain or port
were changed. It also behaved in a similar manner to

Chrome with respect to a change in the path – still au-
tomatically setting the username and password fields
to the stored values.

• Both, Opera and Safari behaved in a similar manner.
With changed origins, they refused to fill out forms,
whereas the path was not taken into consideration in
the decision whether to insert the stored credentials or
not.

• Internet Explorer: In contrast to all the aforemen-
tioned, Microsoft’s Internet Explorer apparently stores
the complete URL of the form it saved the password
data for. In our tests, it showed to be the only browser
that did not insert stored credentials even if only the
path changed.

• Maxthon Cloud Browser: Alongside all the well-known
browsers we examined thus far, we also looked at the
password manager of the Maxthon Cloud Browser. Most
interestingly, the passwords were apparently only stored
coupled with the second-level domain they stemmed
from. In our tests, the browser would still fill in pass-
word fields even if the protocol, sub domain, port or
path changed.

Summarizing, our tests showed that out of the most com-
monly used browsers on the Web, all but Internet Explorer
gladly fill forms on any part of the same Web application,
whereas the application borders are determined by the Same-
Origin Policy. The Maxthon Cloud Browser even fills in
credentials if only the same second-level domain is visited –
ignoring both the protocol and the port of resource – making
it even easier for an attacker to extract the passwords from
its storage.

Form matching.
After having examined how browsers treat changes in the

URL with respect to their password managers, we analyzed
what kind of information on the actual form browsers would
store. To gain insight into this, we built another set of test
pages – this time with different modifications to the login
form itself. Our test pages were different from the original
form in different aspects, which we discuss briefly in the
following.

For the first test case, we removed the action and the
method of the form. Our second modification was the re-
moval of the names of all fields in the form, whereas the
third change was to only change the names of all fields rather
than removing them. For the next part of our analysis, we
removed the types from all fields, essentially resetting them
all to type=text. We then derived a minimal form as shown
in Listing 1, only consisting of two input fields with random
names, no action or method as well as no additional submit
buttons. After these changes to the form fields, we build
a final testing page, setting the autocomplete attribute for
the password field to off. According to the W3C specifi-
cation [12], this value indicates the browser should neither
store the data inserted into that field nor automatically fill
it in later.

Utilizing these, we now discuss the matching criteria with
respect to the structure of the form presented to the pass-
word manager.

• Google Chrome: We observed that neither action nor
method of the form were criteria in the decision, whereas
the same held true for changes to the names of the
fields we provided. However, if we presented Chrome
with fields without any name, it would not provide the
credentials to the form. Chrome did not strictly ad-
here to the autocomplete setting of the password field,
prompting the user to save the password nonetheless.
It did however adhere to the setting when inserting
the password into the form – nevertheless, we could
extract secret data by adding a second form, as de-
scribed in Section 3.3. Since the matching is done on
a structural basis, the minimal form shown in Listing 1
was sufficient for this attack.

• Firefox also only performed matching against a form’s
structure, not the content itself. In contrast to what we
had seen with Chrome, Firefox did however also insert
credentials into forms that only contained input fields
without names. Also unlike Chrome, Firefox adhered
to the autocomplete attribute – if either field had this
set to off, Firefox would not store any data. Due to
these factors, injecting the minimal form would still
trigger the auto-fill functionality of Firefox’s password
manager.

• Opera and Safari again behaved alike, filling in pass-
words into the minimal form but not into forms con-
taining only input fields without names. On our test
machine, a Macbook running OS X Mavericks, we dis-
covered that both Opera and Safari also use the OS X
keychain to store their passwords. Thus, after having
stored a password in Opera, Safari automatically filled
out our fields although we had not previously stored
a password in its database. While Opera – similar to
Chrome – also offered to store passwords if at least one
of the posted fields did not have autocomplete set to
off, Safari behaved like Firefox and did not save any
data in that case. Again, the test subjects only per-
formed structural rather than content matching, lead-
ing to both of them also auto-filling the minimal form.
Contrary to Firefox, both browsers would not fill input
fields without names.

• Internet Explorer: As explained in Section 5.1, Inter-
net Explorer was the only browser that required any
form of user interaction to fill in the passwords. To
nevertheless check the functionality, we manually in-
teracted with the browser to ensure that it would fill
in the username and password. In that, we discovered
that Internet Explorer applies matching criteria in the
same manner as Firefox, namely inserting passwords
even into forms containing only input fields without
any name. In terms of adhering to the autocomplete
attribute, Internet Explorer did respect the value by
not saving any information if either field had the au-
tocomplete value set to off.

• Maxthon Cloud Browser: Not unlike the insecure be-
haviour it showed regarding matching the URL, the
Maxthon Cloud Browser was not at all strict in match-
ing the form, even filling in input fields that had no
name and – most notably – that had autocomplete set
to off.

To sum up: Most browsers are very relaxed in terms of
matching criteria. All but Internet Explorer would still fill
in passwords if only the origins matched, whereas the Max-
thon Cloud Browser even only took the second-level domain
into consideration for its decision. Similar to that, matching
against a form was mostly performed on a structural level,
i.e. meaning that any two fields were filled out if the lat-
ter was a password. According to Mozilla[6], this is done
by design as a convenience feature. Looking at the results,
the tests with different forms showed that the attacker only
has to create a minimal form as shown in Listing 1 to trick
the browser’s password managers into providing the stored
passwords from any site that uses two input fields for its
login dialogue.

All the previously discussed results are depicted in Ta-
ble 1, whereas ’Yes’ denotes that the criterion must match.
For the minimal form, ’Yes’ denotes that the minimal form
was sufficient, whereas ’Yes’ for autocomplete means that
the browsers would not save passwords if the autocomplete
attribute was set to off.

Listing 1: Minimal HTML form used in our tests
<form>

<input name="random1">

<input name="random2" type="password">

</form>

5.2 Password fields
To obtain a realistic picture on how password fields are

currently used in practice and to which degree real-world
password dialogs are susceptible to the attacks discussed in
Section 3, we conducted a survey on the password fields of
the top ranked Web sites according to the Alexa index [1].

5.2.1 Methodology
To locate and analyze password fields in real-world Web

sites, we conducted a lightweight crawl of the top 4000 Alexa
sites. As many modern sites rely on client-side markup cre-
ation and DOM manipulation via JavaScript, we chose a
full fledged browser engine as the technical foundation of
our crawling infrastructure: We implemented an extension
for the Chrome browser, that pulls starting URLs from a
backend component, which are subsequently visited by the
browser. This way, we not only can examine the same fi-
nal DOM structure that is also presented to the browser, it
also gives us the opportunity to observe client-side actions
after a password has been entered (more on this below).
Our Chrome extension consists of the following JavaScript
components [10]:

• A single background script, which is able to monitor
network traffic and distribute the crawling process over
multiple browser tabs,

• and multiple content script instances, one for each Web
document that is rendered by the browser. A content
script is instantiated as soon as a new document is
created by the browser engine. This script has direct
access to this document’s DOM tree. However, the
script’s execution context is strictly isolated from the
scripts running in the document.

• Thus, the content script injects a user script directly
into the documents’ DOM. Unlike the content script,

Criteria # Sites % rel. % abs.
Password found 2143 100 % 53,6 %
PW on HTTPS page 821 38,31 % 20,5 %
Secure action1 1197 55,9 % 29,9 %
Autocomplete off 293 13,6 % 7,3 %
X-Frame-Options 189 8,9 % 4,7 %
JavaScript access 325 15,1 % 8,1 %

1: Password form submitted to an HTTPS URL

Table 2: Recorded characteristics of the Alex Top
4K password fields

which is cleanly separated from the document’s script
environment, the user script runs directly in the same
global context as the document’s own script content.
This in turn grants us the ability to wrap and intercept
native JavaScript functions [17], such as XMLHttpRe-

quest or getter/setter properties of HTML objects.

Using this infrastructure, our extension conducted the fol-
lowing steps:

The homepage URL of the next examination candidate is
pulled from the backend and loaded into one of the browsers
tabs. After the rendering process has terminated, the DOM
tree is traversed to find password fields. However, most sites
do not immediately contain the login dialog (if they have one
at all) on their homepages. Instead, it is usually contained
in a dedicated subpage, linked from the homepage. Hence,
in case no password field could be found on the homepage,
all hyperlinks on this page are examined, if they contain
indicators that the linked subpage leads to the site’s login
functionality. This is done via a list of indicative keywords,
consisting of e.g., “sign in”, “login”, or “logon”. If such a link
was found, the browser tab is directed to the correspond-
ing URL and this document is examined for password fields.
While this methodology is apparently incomplete, e.g., due
to the keyword list only containing terms derived from the
English language, turned out to be sufficient to find a rep-
resentative number of password fields (see Sec. 5.2).

If a password field was found, important characteristics
of the document were recorded, including the hosting doc-
ument’s URL, the corresponding HTML form’s action at-
tribute, as well as the presence of autocomplete attributes
and X-Frame-Option headers.

Furthermore, to observe potential client-side processing
after a password has been entered, we instrumented the
get-property of the password field using JavaScript’s Ob-

ject.defineProperty API [22], after the page’s rendering
process has terminated, but before the page’s own scripts
executed.

Subsequently, after the page’s scripts have been run, the
user script simulates user interaction with the password field
to potentially activate JavaScripts that access the password
value legitimately. More precisely, our script triggers Java-
Script events, that would occur if a user clicks into the field,
changes its values, and leaves the password field, i.e., moves
the focus to a different field. Finally, the script submits the
form, in order to activate any JavaScript that is tied to the
onsubmit event.

5.2.2 Results
During our crawl, we could successfully detect a login form

on 2,143 of the 4,000 domains. In the following, we will

Port Path sub domain any name req. name match input type match min form autocomp.
Chrome 31 Yes No Yes Yes No Yes Yes No
Internet Expl. 11 Yes Yes Yes No No Yes Yes Yes
Firefox 25 Yes No Yes No No Yes Yes Yes
Opera 18 Yes No Yes Yes No Yes Yes No
Safari 7 Yes No Yes Yes No Yes Yes Yes
Maxthon 3 No No No No No Yes Yes No

Table 1: Overview of tested browsers and their matching criteria

outline the analysis of the data we gathered from these fields
with respect to different, security-relevant questions.

As discussed in Section 4.1, the use of the autocomplete

attribute on input fields allows an application to ensure that
no data is persisted into the password manager’s storage.
We therefore investigated how often this was explicitly set
to off, essentially instructing the browser to neither store
login data nor auto-filling these forms. Out of the 2,143
domains we examined, a total of 293 domains prohibited
password managers from storing the credentials this way.

In respect to the ClickJacking attack on a password man-
ager that requires user interaction (see Sec 3.3), the appli-
cable remedy is the usage of the HTTP’s X-Frame-Options

response header [26]. By using this header an application
can explicitly tell the browser that a page may not be ren-
dered inside a frame. However, this only helps against the
discussed attacks if the header is set to DENY, since we must
assume that the XSS attacker is capable of positioning an
iframe containing the login form on a page located in the
same application, thus running under the same origin. In our
investigation, we found that only 189 domains set the header
to DENY, while another 173 had set it to the SAMEORIGIN,
which is useless in the context of the discussed attacks.

Furthermore, to gain insight on the extent of legitimate
client-side functionality that uses JavaScript to read pass-
word fields, we instrumented the password field, such that
we were able to record read access (see above). For a total of
325 password fields, we were able to witness read operations
via JavaScript.

Finally, we examined to which degree the sites were poten-
tially susceptible to network attackers. To do so, we checked
how many forms containing password fields are delivered via
plain HTTP rather than HTTPS. In the attacks scenario de-
scribed by Gonzalez et al. [9], enabling HTTPS effectively
blocks their attacker. In our study, we found that only
821 domains utilize HTTPS when transmitting the pass-
word field itself. The remaining 1,289 domains are hence
susceptible to the network-based attacker who directly in-
serts JavaScript into the server’s response to retrieve the
password data from the victim.

Additionally, a network-based attacker may also retrieve
passwords from users once they log in to an application if
the credentials are sent to the server using HTTP and not
HTTPS. Investigating how many applications send out se-
cret login data in an unencrypted manner, we found that in
total, 1197 sites used HTTPS to send the password data to
the server, leaving 946 sites with unencrypted communica-
tion.

5.3 Assessment
As shown in Section 5.1, most browsers only store the

origin of a password and not the complete URL of the form
it was initially stored from. Thus, placing a form on an

arbitrary page with the same origin as the login form is
sufficient to extract credentials from the victim.

The Cross-Site Scripting attacker, which we discussed in
the previous sections, is capable of injecting his malicious
payload into applications that are delivered via HTTP as
well as over HTTPS. Thus, the only line of defense in this
case is the autocomplete feature. As discussed earlier, this
is only used in 293 login pages, thus resulting in a total
number of 1,850 out of 2,143 domains which are potentially
vulnerable to password stealing by an XSS attacker. This
amounts to a total of 86.3% of analyzed pages which are
susceptible to the attack scenario we outlined. Apart from
Microsoft’s Internet Explorer, the built-in password man-
agers of all browsers we examined automatically filled out
forms presented to them and would also behave in the same
manner if the login page was put into a frame. In order to
successfully conduct an attack on Internet Explorer, the at-
tacker would have to have found a vulnerability on the exact
login page and would also have to rely on the victim actively
selecting the credentials to insert.

The network-based attacker, who is only capable of in-
jecting his malicious payload into login pages which are not
served using HTTPS, can only successfully attack 1,029 dif-
ferent domains, summing up to 48% of all applications we
analyzed.

These observations lead us to the conclusion that the
current implementation of browsers’ password managers is
highly vulnerable with respect to password stealing – both
by a network and a XSS attacker. Also, the server-side mea-
sures we discussed in Section 4.1 are not employed in prevail-
ing web applications in a satisfactory manner. Therefore, in
the following section, we will discuss a new approach to the
concept and implementation of a password manager capable
of tackling these issues.

6. CLIENT-SIDE PROTECTION
Our analysis has shown that popular browsers implement

password managers in a way that is susceptible to Cross-
Site Scripting attacks. We have shown that most of the
browsers neither save information on the URL the password
was initially stored for nor do they require user interaction to
fill out forms. This allows the attacker to retrieve passwords
in the presence of an XSS vulnerability. In the following,
we propose a simple yet effective solution to counter these
types of attacks on password managers.

6.1 Concept
The common enabling factor of the documented attack

types (see Sec. 3) is the fact that the secret data is directly
inserted into the forms when the page is loaded, and can
subsequently be retrieved by JavaScript.

The underlying problem is that concept and implemen-
tation of password managers are not aligned. Abstracting

what a password manager’s task is, we see that it should aid
users in the login process to Web applications. This process
can be seen as the credentials being sent to the login page.
The implementation of that paradigm however aims at filling
out forms before the actual, clear-text login data is required.
A XSS attacker aims specifically at this conceptual flaw, ex-
tracting the credentials from the auto-filled form. In our
notion, a password manager should ensure that only once
the login data is sent to the server, the plain-text password
is contained in the request. Hence, in the following, the
propose an enhanced password manager which tackles this
conceptual flaw.

Our proposal is that a password manager should only in-
sert placeholding nonces into a form. Once the user then
submits the form towards the application, the password man-
ager replaces the nonce with the original, clear-text pass-
word. Thus, if an attacker can extract the content of this
form utilizing a XSS vulnerability, he is nevertheless unable
to retrieve the real password of the targeted user.

Furthermore, our mechanism requires strict matching of
the password field name attribute and the corresponding
POST value. For better understanding of the rationale be-
hind this, consider the following scenario: The attacker is
able to inject a new field called query into the form. Once
the password manager has filled in the placeholder into the
password field, the attacker’s code copies the value of that
field into the newly added query field. He then changes the
action of the form to the application’s search functionality.
If the password manager now replaced all occurrences of the
placeholder in the request, the query parameter would also
contain the clear-text password. Under the assumption that
a search page will in some manner reflect the search term
back to the user, the attacker could then extract the pass-
word from this response. Therefore, making sure that the
password manager only exchanges the correct field is essen-
tial.

6.2 Implementation
To investigate the soundness of our proposal, we imple-

mented a proof-of-concept password manager. Since com-
pletely changing the implementation of one of the built-in
password managers in the modern browsers would have been
to complex, we opted to instead build an extension for Fire-
fox. The extension is built upon the original, built-in pass-
word manager which is used to only store the placeholder
values. The clear-text passwords in turn are stored in a
separate storage located inside the extension. For our pro-
totype, we did not implement any form of encryption for
these values, since securely storing the passwords inside the
browser is out of scope for this work.

Figure 2 shows how our approach works when a new user-
name and password combination is saved. First, the user
is prompted to have the login manager remember the re-
cently sent password. In the second step, once the user has
agreed to do so, the login manager stores the username and
password combination. Firefox provides all plugins with a
means of being notified when credentials are stored in the
password manager [20]. The notification message contains
– along with the recently stored username and password –
the origin of the site the password was posted to as well as
the names for both the username and password field in the
submitted form. Our extension saves all this information
in its own storage and replaces the password in the built-

Our Extension Password Manager

host=http://localhost, user=user1, pwd=secret

host=http://localhost, user=user1, pwd=nonce

1

2

3

Figure 2: Initial login and credential storing

in storage with a random placeholder value (nonce). This
placeholder value is subsequently also stored inside the ex-
tension’s database alongside the previously persisted data to
ensure that the matching credentials can be extracted later
on.

Figure 3 outlines how the placeholder is later restored in
a normal login. When opening the login page, the built-in
password manager inserts the username and the placeholder
into the form. Similar to the internal password manager,
the extension is notified of a password form being submit-
ted. [6] Subsequently, the next outgoing POST request is
scanned by our extension for the easily discernible place-
holder value. If the nonce is found, the extension searches
its own database for the corresponding entry. Next, the
entry’s origin is checked against the origin of the page the
data is being sent to. If the origins match, the placeholder
is replaced with the actual passwords adhering to the afore-
mentioned constraint that only the password field (whose
name is stored in the extension’s data storage) should be
changed. On the lower half of the figure, this is shown. Al-
though the nonce is contained in the HTTP request, it is
not replaced with the actual secret data since the name of
the POST parameter does not match. Thus, the attacker
cannot utilize the search functionality to extract the secret
password data from our password manager.

We also evaluated the option of exchanging GET parame-
ters in a request. In our empirical study we found that none
of the sites use a form in combination with a GET request.
An attacker could however easily exchange the method of a
form from POST to GET. If our proposed password manager
would then exchange the nonce with the secret password, the
adversary could easily read the complete URL of the newly
loaded page and thus retrieve the password. Therefore, we
explicitly disable the replacement of our nonces in GET pa-
rameters and only exchange them for the real credentials in
POST requests.

6.3 Evaluation
In this section, we discuss both the security and the func-

tional evaluation of our approach, showing that it adds se-
curity while not causing incompatibility with existing appli-
cations.

6.3.1 Security Evaluation
After the password value has initially been stored by the

password manager, it is never again inserted into Web docu-

POST /login.php
Data: user=user1&pwd=nonce

POST /login.php
Data: user=user1&pwd=secret

Our Extension
POST /search.php
Data: user=user1&query=nonce

POST /search.php
Data: user=user1&query=nonce

Figure 3: Replacement of login credentials by our enhanced password manager

ments. Hence, it is kept out of reach of potentially malicious
JavaScript.

Furthermore, our implementation enforces strict matching
constraints, before the replacement process executes: Only
password nonces for which the combination of target origin
and password parameter name matches the recorded values
are substituted with the actual password value in the out-
going request. This requirement effectively thwarts attack
attempts in which the adversary tries to leak the password
via tampering with the password field’s form element in the
timespan between the autofill process and the form submis-
sion. Thus, our proposed implementation of a secure pass-
word manager effectively hinders an attacker who utilizes
XSS attacks against his victim.

However, the attacker model discussed by Gonzalez et
al. [9] – positioned at the network layer – could still be suc-
cessful if password data is transmitted in clear-text to the
server. In our study of the Alexa Top 4000 sites, we found
that 44,1% of the examined sites utilize HTTP instead of
HTTPS to transmit the credentials to the server. In these
cases, the network-based attacker could wait for the form
to be submitted and subsequently retrieve the secret login
data from the traffic capture. Nevertheless, this kind of at-
tack does not specifically target password managers and can
therefore not be fully prevented by a secure password man-
ager in any case.

6.3.2 Functional Evaluation
From the user’s point of view, nothing changes compared

to the behavior of the current generation of deployed pass-
word managers: After page load, the password field is au-
tomatically filled with characters, which are presented to
the user with masquerading asterisks. After form submit,
the browser exchanges the password nonce with the actual
values, before it is sent to the server.

Our approach aims at only putting the real password of a
user in the outgoing request to the server and not into the
password field. This however leads to potential problems
with Web applications that do some transformation on the
original field’s value before submitting it. For instance, an
application might derive the hash sum of the user-provided
password on the client-side before submitting it.

In the evaluation of the top 4000 Alexa sites, we detected
325 JavaScript accesses to password data (see Sec. 5.2). We
then manually analyzed the snippets responsible for these
accesses and detected that a total 96 domains used client-
side functionality such as XmlHttpRequests to transmit the
password data to the server. Out of these 96 cases, 24 pages
transformed the provided password before forwarding it to
the server, whereas 23 employed hashing functions like MD5
and SHA1 and the remaining case encoded the password as
Base64. Of the remaining 72 pages that did not post the

form directly to server, only 6 pages employed HTTP GET
requests to transmit the credentials, whereas the rest used
HTTP POST in their XmlHttpRequests. Our proposed ap-
proach would obviously not work in these 30 cases, since our
extension neither exchanges passwords directly in the input
field nor does it modify HTTP GET requests. However, the
current implementations of the password managers do not
support storing passwords that are not sent via submitting
HTML forms – thus our approach is in no way inferior to the
currently deployed concepts [6]. Also, if the built-in pass-
word manager stored these credentials, there is no way of
detecting whether access to a given password field is done
by the legitimate page or is a Cross-Site Scripting attack.
Hence, we deliberately fail in the aforementioned scenario
by not replacing the nonce in the input field with the real
password. Therefore, our approach is secure by default and
can also not be undermined by an unknowing user.

The purpose of the remaining 229 scripts was verify was
that certain criteria had been met in filling the user and
password field, e.g. the username being an e-mail address
or the password consisting of at least a certain amount of
chars.

7. RELATED WORK
Most research in the area of password managers focussed

mainly on three different aspects: generating pseudo-random
and unique passwords for each single Web application based
one some master secret [11, 25, 4], storing passwords in a se-
cure manner [31, 3, 14, 8] and protecting users from phishing
attacks [29, 30].

The problem of weak password manager implementations
with respect to their vulnerability towards Cross-Site Script-
ing attacks has been discussed by browser vendors since
2006 [23]. However, researchers did not re-evaluate possi-
bilities in terms of adopting new concepts to protect users
from these kinds of attacks. In a recent blog post, Ben Toews
again brought up the issue of password managers that were
prone to XSS attacks [28]. However, the question on how to
improve the security of password managers remained unan-
swered.

Furthermore, in 2013, Gonzalez et al. [9] discovered a re-
lated attack. They described a network-based attacker that
can inject code of his own choosing into any unencrypted
HTTP connection. To leverage this, they injected multiple
invisible frames into pages loaded by the victim and iterated
through the login pages of different domains. They auto-
mated their attack using a self-developed tool called Lupin
and were able to extract 1000 passwords in 35 seconds from
a victim’s machine. They propose a first set of countermea-
sures, which are either in line with the mitigation strategies
covered in Sec. 4, and thus, share the same drawbacks, or

are targeted at strict network layer security, which is not
applicable to our XSS attacker.

8. CONCLUSION
In this paper, we have demonstrated that current imple-

mentations of built-in password managers in browsers are
vulnerable to XSS attacks targeting the stored passwords.
We have identified the root cause of these problems, namely
the fact that password managers automatically fill out pass-
word fields with the clear-text password which are subse-
quently accessibly by client-side code.

Our approach thwarts this class of attacks through keep-
ing the actual password value out of the reach of potentially
malicious JavaScript. It works by filling the password fields
with placeholder values which are only replaced later, once
the request is sent to the server. For robust protection, our
prototype enforces strict integrity constraint in respect to
the password form’s context and only exchanges the place-
holder for the credentials if the origins and names of both
login URL and saved password match.

Our solution robustly protects auto-saved passwords from
XSS-based theft attempts, and, in the majority of the ex-
amined cases, mitigates related, network-level attacks un-
covered by Gonzalez et al [9], while maintaining a high de-
gree of compatibility with the currently established behavior
of password managers and real-world practices in handling
password fields.

Acknowledgements
The authors would like to thank Eric Schmall and Armin
Stock for their work pertaining to the implementational parts
of this work as well as the anonymous reviewers for their
helpful comments. Martin Johns’ work was partially funded
by the EU projects WebSand (FP7-256964, http://websand.
eu) and STREWS (FP7-318097, http://strews.eu). The
support is gratefully acknowledged.

9. REFERENCES
[1] Alexa Internet, Inc. Alexa Top 500 Global Sites.

Website, http://www.alexa.com/, accessed in March
2010.

[2] Barth, A. The web origin concept, November 2009.

[3] Bojinov, H., Bursztein, E., Boyen, X., and
Boneh, D. Kamouflage: Loss-resistant password
management. In Computer Security–ESORICS 2010.
Springer, 2010, pp. 286–302.

[4] Chiasson, S., van Oorschot, P. C., and Biddle,
R. A usability study and critique of two password
managers. In 15th USENIX Security Symposium
(2006), pp. 1–16.

[5] Dierks, T., and Allen, C. The TLS Protocol
Version 1.0. RFC 2246,
http://www.ietf.org/rfc/rfc2246.txt, January
1999.

[6] Dolske, J. On firefox’s password manager. [online]
https://blog.mozilla.org/dolske/2013/08/20/

on-firefoxs-password-manager/, August 2013.

[7] Franks, J., Hallam-Baker, P., Hostetler, J.,
Lawrence, S., Leach, P., Luotonen, A., and
Stewart, L. HTTP Authentication: Basic and Digest
Access Authentication. RFC 2617,
http://www.ietf.org/rfc/rfc2617.txt, June 1999.

[8] Gasti, P., and Rasmussen, K. B. On the security of
password manager database formats. In Computer
Security–ESORICS 2012. Springer, 2012, pp. 770–787.

[9] Gonzalez, R., Chen, E. Y., and Jackson, C.
Automated password extraction attack on modern
password managers. arXiv preprint arXiv:1309.1416
(2013).

[10] Google Developers. Chrome Extensions -
Developer’s Guide. [online], http://developer.
chrome.com/extensions/devguide.html, last access
06/05/13, 2012.

[11] Halderman, J. A., Waters, B., and Felten,
E. W. A convenient method for securely managing
passwords. In Proceedings of the 14th international
conference on World Wide Web (2005), ACM,
pp. 471–479.

[12] Hickson, I. Web forms 2.0, Apri 2005.

[13] Ives, B., Walsh, K. R., and Schneider, H. The
domino effect of password reuse. Communications of
the ACM 47, 4 (2004), 75–78.

[14] Karole, A., Saxena, N., and Christin, N. A
comparative usability evaluation of traditional
password managers. In Information Security and
Cryptology-ICISC 2010. Springer, 2011, pp. 233–251.

[15] Klein, A. Dom based cross site scripting or xss of the
third kind. Web Application Security Consortium,
Articles 4 (2005).

[16] Lekies, S., Stock, B., and Johns, M. 25 million
flows later: large-scale detection of dom-based xss. In
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security (2013), ACM,
pp. 1193–1204.

[17] Magazinius, J., Phung, P. H., and Sands, D. Safe
wrappers and sane policies for self protecting
JavaScript. In The 15th Nordic Conference in Secure
IT Systems (October 2010), T. Aura, Ed., LNCS,
Springer Verlag. (Selected papers from AppSec 2010).

[18] Mazurek, M. L., Komanduri, S., Vidas, T.,
Bauer, L., Christin, N., Cranor, L. F., Kelley,
P. G., Shay, R., and Ur, B. Measuring password
guessability for an entire university. In Proceedings of
the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 173–186.

[19] Microsoft. Ie8 security part vii: Clickjacking
defenses, 2009.

[20] Mozilla. Firefox Add-On SDK - Passwords.

[21] Mozilla Developer Network. How to Turn Off
Form Autocompletion. [online],
https://developer.mozilla.org/en-US/docs/

Mozilla/How_to_Turn_Off_Form_Autocompletion,
May 2013.

[22] Mozilla Developer Network.
Object.defineProperty(). [online],
https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Global_Objects/Object/

defineProperty, November 2013.

[23] O’Shannessy, P. Bug 359675 - provide an option to
manually fill forms and log in.

[24] OWASP. Cross-site scripting (xss), September 2013.

[25] Ross, B., Jackson, C., Miyake, N., Boneh, D.,
and Mitchell, J. C. Stronger password

authentication using browser extensions. In
Proceedings of the 14th Usenix Security Symposium
(2005), vol. 1998.

[26] Rydstedt, G., Bursztein, E., Boneh, D., and
Jackson, C. Busting Frame Busting: a Study of
Clickjacking Vulnerabilities on Popular Sites. In Web
2.0 Security and Privacy (W2SP 2010) (2010).

[27] Security, W. Website security statistics report, May
2013.

[28] Toews, B. Abusing password managers with xss.
online, 04 2012.

[29] Wu, M., Miller, R. C., and Little, G. Web
wallet: preventing phishing attacks by revealing user
intentions. In Proceedings of the second symposium on
Usable privacy and security (2006), ACM,
pp. 102–113.

[30] Ye, Z. E., Smith, S., and Anthony, D. Trusted
paths for browsers. ACM Transactions on Information
and System Security (TISSEC) 8, 2 (2005), 153–186.

[31] Zhao, R., and Yue, C. All your browser-saved
passwords could belong to us: A security analysis and
a cloud-based new design. In Proceedings of the third
ACM conference on Data and application security and
privacy (2013), ACM, pp. 333–340.

