
PhishSafe: Leveraging Modern JavaScript API’s for
Transparent and Robust Protection

Bastian Braun
ISL, University of Passau

Passau, Germany
bb@sec.uni-passau.de

Martin Johns
SAP Research

Karlsruhe, Germany
martin.johns@sap.com

Johannes Koestler
University of Passau
Passau, Germany

koestler@fim.uni-
passau.de

Joachim Posegga
ISL, University of Passau

Passau, Germany
jp@sec.uni-passau.de

ABSTRACT
The term “phishing” describes a class of social engineering
attacks on authentication systems, that aim to steal the
victim’s authentication credential, e.g., the username and
password. The severity of phishing is recognized since the
mid-1990’s and a considerable amount of attention has been
devoted to the topic. However, currently deployed or pro-
posed countermeasures are either incomplete, cumbersome
for the user, or incompatible with standard browser technol-
ogy. In this paper, we show how modern JavaScript API’s
can be utilized to build PhishSafe, a robust authentication
scheme, that is immune against phishing attacks, easily de-
ployable using the current browser generation, and requires
little change in the end-user’s interaction with the applica-
tion. We evaluate the implementation and find that it is
applicable to web applications with low efforts and causes
no tangible overhead.

Categories and Subject Descriptors
K.6.5 [MANAGEMENT OF COMPUTING AND
INFORMATION SYSTEMS]: Security and Protection

Keywords
Web Security; Phishing; Protection

1. INTRODUCTION
From a security point of view, passwords are a terrible

choice for authentication. They are easily stolen. Often,
they are easy to guess, due to the fact that they were chosen
in a fashion that allows the user to remember them (e.g.,
names of pets, children, or cars). And they are frequently

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CODASPY’14, March 3–5, 2014, San Antonio, Texas, USA.
Copyright 2014 ACM 978-1-4503-2278-2/14/03 ...$15.00.
http://dx.doi.org/10.1145/2557547.2557553.

reused, causing the compromise of one server to probably
affect several independent applications as well.

However, it is an unrealistic assumption, that we will
reach a situation, in which password-based authentication
looses its significance, even in the presence of well designed
password-less techniques, such as client-side SSL authenti-
cation, and promising new developments, such as Mozilla
Persona [30].

Unlike all alternatives, the user’s requirements to utilize
password authentication are extremely light-weight: All she
needs to logon, is to remember her username and password.
Password-less authentication systems either require precon-
figured state on the device, such as installed client-side cer-
tificates, the presence of specific hardware, such as smart
card readers, or the possession of additional items, e.g., a
cell phone to obtain out-of-band credentials [15].

This characteristic of password authentication is even am-
plified in the presence of web applications: The only remain-
ing software requirement is, that on the utilized computer
a web browser is installed, something that can be taken for
granted since several years. Hence, no matter in which situ-
ation a user is, as long as she remembers her password and
has a networked device with a web browser at her disposal,
she is able to access her applications. No other system for
networked applications offers similar properties. It can even
be argued that the ease of password authentication was one
of the success-factors of the web.

However, the passwords’ strength – their ease of use – is
also their biggest weakness: As easily they are entered, as
easily they are stolen, in case that a used password field is
actually under the control of the attacker.

In variants, this class of attack, known under the term
phishing, is probably as old as the discipline of password
authentication itself, having its roots in social engineering
attacks [29]. The severity of phishing is recognized since the
mid-1990’s and a considerable amount of attention has been
devoted to the topic. However, as we will show in Section 2,
currently deployed or proposed countermeasures are either
incomplete, cumbersome for the user, or incompatible with
standard browser technology.

In this paper, we present PhishSafe, a light-weight ap-
proach that provides robust security guarantees, even in case
that the user’s password was successfully stolen. The core of
our approach is a transparent browser-personalization pro-

cess, that is invisible to the user. This way, unlike the major-
ity of existing anti-phishing approaches, PhishSafe does not
burden the user with altered authentication interaction or
additional burdens, such as recognizing security indicators or
visual authenticity clues. On the contrary: As long as a user
predominately uses only a single browser, she won’t notice
a difference to the currently established, insecure scheme.

Paper Organization
The remainder of this paper is structured as follows: The
next section provides an in-depth discussion of phishing at-
tack vectors, current solutions and their shortcomings, and
the user as the weakest link in phishing protection as well as
a definition of the attacker models considered in this paper.
Section 3 presents the concept of PhishSafe, our authenti-
cation scheme to overcome phishing attacks. Section 4 de-
scribes the implementation of PhishSafe and provides tech-
nical details. The evaluation is given in Section 5. Section 6
discusses related work before Section 7 concludes.

2. PHISHING ATTACKS
While phishing attacks have a long history, phishing activ-

ity has not decreased over time (see Fig. 2). The attackers’
strategy, however, has changed to counter the anti-phishing
means in use, for instance, phishing sites move faster to
prevent blacklisting (see Fig. 1). In this section, we de-
scribe modern phishing attack methods, model the attack-
ers’ capabilities, evaluate proposed anti-phishing solutions,
and analyze why those solutions have not significantly re-
duced phishing activities.

2.1 Attack Method
The Anti-Phishing Working Group (APWG)1 states that

phishing schemes use“spoofed e-mails purporting to be from
legitimate businesses and agencies, designed to lead con-
sumers to counterfeit websites that trick recipients into di-
vulging financial data such as usernames and passwords.”[45]
Attackers usually send emails or personal instant messages
and put pressure on the recipients to perform actions in-
tended by the attacker. For instance, recipients are told
that their email quota is reached, their credit card is dis-
abled, or an invoice has not been paid. Usually, to increase
the pressure and omit a reconsideration, immediate steps
are allegedly necessary. These steps require logging into an
account on a website. In this scenario, attackers know the
target business. All they need to do is copy the public de-
sign of the website and send bulk emails. In order to educate
customers, anti-phishing campaigns published rules of con-
duct. For example, users are advised to not click on links
embedded in emails if the link does not include the expected
domain of the (seeming) sender. As another rule of thumb,
reliable emails contain the recipient’s name and maybe other
personal information which is supposedly not known to a
phisher.

The following attack vectors emerged in the past and il-
lustrate the ongoing arms race between phishers and the
anti-phishing community.

2.1.1 Concealing the Target Domain
In order to answer the anti-phishing suggestions, phishers

took measures to make embedded links look familiar to the

1http://www.apwg.org/

user. These measures range from open redirects on the tar-
get website, over URLs featuring a target domain prefix and
URL shorteners hiding the target, up to malicious relying
parties in single sign-on protocols.

Open Redirects First of all, a phisher’s chance is con-
siderably higher if the link the victim is supposed to click
appears to belong to the expected domain. In that sense,
an attacker can succeed if he finds an open redirect function
on the target web application. Web applications redirect
their users for several reasons: when a requested web page
is not found (HTTP 404), users are redirected to a land-
ing page that explains what happened. Webmail providers
redirect their customers via ‘de-referrers’ to avoid that the
actual URL of the read email appears as a part of the
subsequent request to the foreign domain (in the Refer-

rer header). Open redirects do not sanitize their input,
i.e., the redirect target and source. Given that the at-
tacker prepared a phishing site for example.com that has an
open redirect, he can send out emails asking users to click
on https://www.example.com/redirect?target=example-

attack.com. A better masking is possible by URL encoding
the target parameter. Finally, the victim sees an https link
to the expected domain and can eventually check the SSL
lock on https://www.example-attack.com but is attacked,
though.

Confusing URLs Second, it is often sufficient to make
the URL appear innocent at a first glance.

Non-expert users can hardly distinguish between the host,
domain, and path elements of a URL. Phishers exploit this
weakness crafting links like https://www.example.com.attacker-
domain.com which seem to contain the expect domain name
example.com. Similar approaches include typos in the URL,
e.g. https://www.gooogle.com.

A more sophisticated attack is known as international
domain name (IDN) homograph attack [14]. This attack
makes use of so-called homographs, characters from non-
latin alphabets that are indistinguishable for humans but
interpreted by browsers as different symbols.

URL Shorteners The emerging trend towards URL
shorteners, that save characters on Twitter and prevent line
breaks in emails, makes people familiar with short URLs
and redirects to unpredictable URLs. Attackers exploit
that people are more used to click on links from bit.ly,
tinyurl.com, is.gd, or goo.gl than on links containing
unknown domains. If the target website looks convincing
enough, the user’s focus is caught on the content [52].

Malicious Relying Parties Single sign-on (SSO) proto-
cols require the user to log in once with her identity provider
to obtain access to all related accounts. If the user first vis-
its a relying party, she is redirected to her identity provider.
A malicious relying party can redirect the user to a phishing
identity provider to request the user’s credentials.

2.1.2 Spear Phishing
Spear Phishing denotes a particular phishing attack vec-

tor that targets a set of victims the attacker has information
about. While this attack is restricted to those users the at-
tacker could gain knowledge about, it can still hit thousands
of users. The first step in a common scenario is a data leak
of a company’s customer database. In most cases, there is a
laxer security policy in place if the database does not con-
tain critical data like passwords, social security numbers,
or credit card information. Using the obtained data, how-

ever, an attacker can address his victims personally includ-
ing the name, correct email address, and account number
which used to be an indicator of a benign message.

2.1.3 Browser-less Phishing
A phisher can circumvent browser-based countermeasures

if the user does not use her browser to follow his instruc-
tions. As a matter of fact, users regularly experience that
colleagues or friends quickly ask for information by email
or instant messenger. Phishers convey the notion of this
scenario to make their victims reply with the credentials.

2.2 Attacker Models
In order to estimate a phishing attacker’s capabilities, we

define two attackers. These attackers define the scope of
our work, i.e., we present existing approaches against these
kinds of attackers in Section 2.3 and propose PhishSafe, our
countermeasure, in Section 3.

We consider a phishing attacker as a remote web partici-
pant. He is able to set up websites and email accounts, can
send emails and messages via instant messengers (IMs). He
can obtain valid SSL certificates for his domains. We do not
assume timing constraints, i.e., he can react immediately on
any input at all time.

Moreover, we consider an XSS attacker. He has all capa-
bilities of the phishing attacker but can also inject JavaScript
code into vulnerable web pages.

Neither of both has control over the user’s platform nor
over the network. We neglect browser vulnerabilities and
respective exploits. Also, they can not break cryptography.

2.3 Current Solutions
Several approaches have been applied so far to mitigate

phishing attacks. In this section, we name them and explain
their strengths and weaknesses. We find that they are either
incomplete, cumbersome for the user, or incompatible with
standard browser technology.

2.3.1 Incomplete Countermeasures
One class of countermeasures suffers from incompleteness

in terms of false positives and false negatives, i.e., they do
not protect against phishing on some sites and prevent access
to genuine sites suspected to phishing.

Browser vendors, e.g. Microsoft2 and Google3, as well
as third parties, e.g. PhishTank4, provide lists of malicious
and genuine websites. Browsers query their list upon ac-
cessing a website and check whether this site is known for
phishing. The blacklists suffer from a window of vulnera-
bility between the setup of a phishing site and its listing
[43]. This window can be decreased by real-time queries
towards the list providers for each unknown domain. The
additional online query slows down page loading and reveals
almost the complete browsing history to the list providers.
List providers went over to classify websites automatically to
capture phishing sites earlier [51], however, at the expense
of accuracy, i.e., more false positives and false negatives [25].
The extraction of features from phishing sites provoked an
arms race between phishers, who have a financial interest

2http://windows.microsoft.com/en-US/windows-vista/
Phishing-Filter-frequently-asked-questions
3https://support.google.com/chrome/answer/99020?
hl=en
4http://www.phishtank.com/

in passing those filters, and the blacklist providers. Among
other features, phishers reduce the uptimes of their sites (see
Figure 1) to make the blacklists come to nothing. The trend
lasts and led to an average uptime of one day in 2012 leaving
only very short reaction time to blacklist providers [44].

Figure 1: The Average Online Time of Phishing
Sites in Days Between Oct ’04 and Dec ’07, the Time
of Acquisition by the APWG, src: Regular APWG
Phishing Attack Trends Reports [46]

2.3.2 Countermeasures Cumbersome for the User
Another class of approaches makes use of the increasing

propagation of mobile devices. Users need to enter a second
credential that is either received or generated by their mo-
bile device in order to login or perform critical actions. This
breaks their ongoing workflow as they need to switch to a dif-
ferent device. Example implementations include Google Au-
thenticator [15] and one-time passwords sent to cell phones.
Beside the fact that malware now also targets mobile de-
vices to intercept received tokens [8], both approaches can
not help against our attacker models (see above) because the
attacker only needs to wait for the victim to enter her cre-
dentials and relay all gathered user data to the actual web
application in real time. This way, the user serves as an or-
acle that provides the needed information. In this scenario,
the attacker plays the role of a man in the middle without
manipulation on the network layer.

Client-side SSL aims at replacing username/password-
based logins. Though SSL could overcome most of currently
known weaknesses in knowledge-based authentication, it has
not become popular probably due to its setup complexity
for non-expert users. Finally, SSL certificates are hardly
portable. A user can login to web accounts from every de-
vice using an off-the-shelf browser and her password. It is
rather difficult to store, carry, and use an SSL certificate
securely on an untrusted computer.

2.3.3 Countermeasures Incompatible with Standard
Browser Technology

A family of approaches extends the user’s browser [21, 39,
56, 6, 55, 53, 37, 17, 47, 3, 38, 27, 2, 57, 41] (see Section 6 for
details). Browser extensions and toolbars share a number of
drawbacks:

• They provide no protection by default but only protect
risk-aware users after installation.

• They are inherently incompatible with standard browser
technology and can only protect users of supported
browsers while porting them to other browsers is
hard. [35]

• The majority of browser-based solutions aims at de-
tecting phishing websites while accessed. However,
most users ignore issued warnings and more rely on the
web content to estimate a website’s authenticity. [52]

• Browser toolbars, that classify websites into phishing
and harmless, are susceptible to false positives and
false negatives, i.e. letting phishing sites pass while
warning of genuine sites. Case studies showed that a
high detection rate often comes with a high false pos-
itive rate. [59]

• Phishing is a particular problem on mobile devices
while existing approaches are hard to port because of
the limited screen size. [12]

• Phishers can evade most browser-based protection ap-
proaches by asking victims to reply by email to their
inquiry.

2.3.4 Summary
We can conclude that the existing approaches still leave

room for phishing attacks. None of the current solutions
offers thorough protection for all users. The volatile number
of active phishing sites reflect the ongoing arms race between
phishers and anti-phishing blacklist providers (see Figure 2).
The more stable number of phishing campaigns shows the
unabated activity of phishers over a long period. Matters
are complicated by more targeted spear phishing attacks
which are harder to detect by generic features than common
large-scale attacks.

Emerging consumer-oriented SSO protocols like Mozilla
Persona [30], OpenID [36], and OAuth [33] decrease the
user’s attack surface. Nevertheless, they still require user
logins with the identity provider and, thus, cannot remedy
phishing attacks. SAML [24] and Shibboleth [20] target
business environments and require a higher level of coor-
dination between participants, thus, are more suitable for
closed application scenarios. We provide more details in
Section 6.3.

2.4 The Weakest Link: The User
After analyzing existing countermeasures and modern at-

tack vectors, we identify the user as the weakest link. We
find that phishing attacks abuse the user’s misconception
concerning her communication partner in the World Wide
Web. Transferred to the physical world, a phishing attacker
would set up a storefront that looks familiar to many people.
In the virtual world of the World Wide Web, the attacker
can succeed much easier for several reasons: First of all, the
user has no personal reference point in terms of location.
Informally speaking, she does not know where she actually
is. Most users are not familiar with domains and URLs, and
even if they were, they could still be misled by exploiting
weaknesses in the Domain Name System (DNS spoofing,
pharming). The international domain name (IDN) homo-
graph attack [14] even deceived skilled security experts.

Second, users learned to assess a person’s trustworthiness.
While this assessment can be manipulated, there is hardly
any natural feeling of trustworthiness with respect to pro-
grams and machines nor do reliable indicators help. Exist-
ing approaches focus on proving an email’s (e.g. DKIM [4],
SenderID [28]) or a website’s (e.g. https) trustworthiness but
not the opposite, i.e. in an attack scenario, they do not pro-
vide any helpful hint. Teaching users to check SSL indicators
inspired phishing attackers to spoof those indicators or ob-

tain valid certificates for similar domains, e.g. gooogle.com.
Such indicators are missing on most mobile devices due to
the limited screen size [32]. The opposite approach – warn-
ing users instead of indicating trustworthiness – made users
being annoyed and ignore such warnings [9], because users
want to make things happen and not think about security, so
they do whatever is asked for in even unusual emails [7]. At-
tackers increase their chances by threatening their victims,
for example, announcing bad consequences like blocking an
email account or disabling the credit card. This strategy
prevents that users contemplate on the message’s reliability.

Third, automation allows large-scale attacks making the
efforts worthwhile. The intention to classify phishing at-
tempts led to an arms race meaning that attacks evolve and
require new features to detect phishing [13].

To sum up, we conclude that the user must not play a
decisive role in phishing protection nor can the user behavior
be supposed to change. An algorithmic approach is needed
to rule out phishing attacks.

3. PHISHSAFE
In this section, we describe the idea of our authentication

scheme, named PhishSafe, that avoids the drawbacks identi-
fied in Sec. 2. Section 4 gives details of the implementation.

3.1 Design Goals
Following the lessons learned from previous approaches

and current phishing techniques (see Sec. 2), we phrase the
following design goals for PhishSafe: It

• sidesteps the arms race between phishers and the anti-
phishing community,

• reduces reliance on the user,
• avoids dependence on the browser’s interface,
• waives the need for additional devices and the instal-

lation of protective tools, and
• withstands the attackers defined in Section 2.2.

Our design goals are in parts inspired by Parno et al. [34]
(see Section 6). In the remainder of this section, we motivate
our design goals in more detail.

Sidestep the arms race between phishers and the
anti-phishing community It is important to quit the arms
race with financially motivated phishers that are always one
step ahead. The anti-phishing community can only react on
new phishing techniques while phishers update their features
again.

Reduce reliance on the user We showed in Section 2.4
that the user is the weakest link in phishing scenarios.
Hence, a reliable countermeasure must not rely on the user.
Instead, it must tolerate that the user can be tricked and
gives away all credentials she knows.

Avoid dependence on the browser’s interface Ap-
proaches relying on the browser’s interface either require
the installation of additional software (e.g., toolbars or ex-
tension, thus, excluding users of not supported browsers or
platforms) or can be spoofed using JavaScript or a favicon
(e.g., simulating an SSL lock symbol). The interface is even
hidden on mobile devices due to the limited screen size.

Waive the need for additional devices and the in-
stallation of protective tools The need for second de-
vices makes processes more complex and requires consider-
able changes of the used logon procedure. Those devices
must be always at hand, secure, and have a direct connec-
tion to the browser to transfer control. Obtaining passcodes

Figure 2: Phishing Statistics Since Aug. 2004 in Terms of Active Phishing Sites (dark grey) and Email
Phishing Campaigns (pale grey), src: Anti-Phishing Working Group (APWG) Reports [46]

from a second device is not an option because these can be
phished and exploited.

The usage of protective software is always limited to risk-
aware users utilizing a supported platform.

Withstand the attackers defined in Section 2.2 We
modeled the attackers according to realistic assumptions.
So, a reliable approach must provide protection against their
attacks.

3.2 High-Level Overview
The main idea of PhishSafe is to release the user from

responsibility: she neither needs to perform special actions
nor check security indicators nor keep a secret other than
her password. Instead, she will use a second factor she does
not know and, thus, can not disclose to a phisher. This fac-
tor is stored in her browser and attached to logins towards
the genuine web application. The web application prohibits
logins without proper second factor authentication. An at-
tacker luring his victim on a phishing site can obtain her
password but not the second factor credential. However, the
password alone is not enough to login. The second factor is
established during account setup and, if necessary, restored
after visiting a URL sent by email.

3.3 Detailed Authentication Process
As emphasized above, the authentication scheme imple-

ments two-factor authentication without the user knowing
about it. In order to apply our authentication scheme, the
website stores a secret token in the persistent web storage
of the user’s browser (see Sec. 3.4 for details). The user
does not have to be aware of this token nor does she have
to care. The important point is that this token is subject to
the same-origin policy (SOP) [58] and not accessible to web
applications on foreign domains.

When the user accesses the login page, a challenge string
is invisibly included in the HTML form beside the username
and password input fields. The page also embeds JavaScript
code that computes the second factor credential from the
challenge and the secret browser token using an HMAC func-
tion [23]. The second factor is then appended to the HTML
form and transmitted to the web application together with
the username and password. The web application verifies

the second factor by performing the same computation that
happened in the browser. It denies access to the user ac-
count if the verification fails.

A phisher could lure the user into visiting his prepared
page. Given that the user does not detect the attack, she
enters her username and password and sends them to the at-
tacker’s site. Then, the attacker tries to log into the user’s
account exploiting the phished credentials. The web appli-
cation, however, denies access because the necessary browser
token is not available to compute the valid second factor.

There are scenarios where a browser is not only used by
one user but at least two where both have an account on
the same web application respectively, e.g., a family sharing
one laptop (and OS account) or tablet PC. In this case, they
would share the same browser token. This is also true for
guests accessing the web application via this browser just
once. We prevent such unintended sharing of the browser
token by assigning it to the respective user account in the
browser’s storage, i.e., the second factor can only be com-
puted if a browser token associated with the given username
is found.

3.4 Browser Enrollment
The idea how PhishSafe proceeds has been described

above. What remains is PhishSafe’s bootstrapping, i.e.,
the process that establishes the token in the user’s browser.
There are two options when the token is stored: during ac-
count setup or, afterwards, whenever the user logs in from
a previously unknown browser.

The web application can set a token during the registra-
tion process unless the user opts out, e.g., because she uses
a friend’s device. After the user chooses username and pass-
word, the token is stored in the browser’s web storage.

3.4.1 Restoring the Browser Token
We assume that account information includes the user’s

email address and leverage this as a second channel for to-
ken installation. Given that the user uses more than one
device to access the web application, changes her browser,
reinstalls her operating system or firmware, or just deletes
the browser’s web storage for privacy reasons, she needs an
opportunity to restore her browser token. The password

Figure 3: Authentication Token Logic

alone is insufficient because the attacker can learn it and so
use it to equip his browser with a valid token.

Usual second authentication tokens are not sufficient, ei-
ther. Examples for this class are apps or devices that is-
sue two-step verification numbers, e.g. Google Authentica-
tor [15] and RSA SecurID [10], as well as one-time passcodes
sent to the cell phone or by email. A phishing attacker could
lure the victim on his page and at the same time request the
original login page. When the victim provides her password,
he forwards it and is prompted with an input field for the
second authentication step. Then, he leads his victim to be-
lieve that her browser token needs to be reset and requests
the same authentication credential that he is supposed to
enter. Finally, he only needs to forward the user’s second
factor credential to finally own the password and the browser
token. Note that this attack even works with passcodes sent
to the user’s cell phone because the application indeed sends
such a code to the user (upon the attacker’s request). We
believe that receiving the code makes the actual phishing
attack even more credible. The attacker acts as a man in
the middle.

Our authentication scheme uses complete URLs that must
be clicked (or copied and pasted to the browser) by the user.
When the user enters her username and password on the lo-
gin page but no respective browser token is found, the web
application sends a confirmation email to her account. The
email contains a unique URL that must be accessed within
the same session context as the login request. In the attack
scenario described above, the attacker’s login attempt trig-
gers the email confirmation. However, if the user clicks on
the provided link, she accesses the real web application but
not the phishing page. At that point, the attack becomes de-
tectable for the web application because the session context
does not match. The attacker never obtains the necessary
input to obtain a valid browser token.

3.4.2 One-Time Account Access
Finally, the user might use a public computer to access the

web application. So, a persistent credential in the browser’s
web storage is not appropriate. For this reason, Phish-
Safe also provides one-time access. The only difference to

the above described browser token reset is that no token is
stored. After the user enters her username and password and
no browser token for this username is found, she is asked if
she is using a public computer or if she trusts all users of this
computer and uses it regularly. In both cases, the web ap-
plication sends an email with a unique URL. However, if the
user requests the URL from a public computer, no browser
token is set and access to the account is granted only once.
The token handling logic is given in Fig. 3.

3.5 Protection against the XSS Attacker
The authentication process described above perfectly pro-

tects against the phishing attacker (see Sec. 2.2). The XSS
attacker, however, could inject JavaScript code that is ex-
ecuted within the same domain context as the web appli-
cation. This allows him to read the browser’s web storage
and obtain the secret browser token. For this reason, we
move the token and all related computations to a secure
subdomain. Given that the actual web application runs on
www.example.com, a subdomain, e.g., auth.example.com, is
responsible to handle and store the secure browser token.
This subdomain only contains static JavaScript dedicated
to this task and nothing else. Based on this, we consider
well audited and XSS-free code to be feasible. An HTML
document served from the subdomain and embedded into
the main web application as an invisible iframe contains
the JavaScript code. This way, we leverage the guarantees
provided by the same-origin policy [58] and the postMes-
sage API [50] to prohibit access by the XSS attacker to the
browser token while enabling controlled interaction between
the web application and the secure subdomain.

Hence, the challenge appended to the login form is submit-
ted to the secure subdomain via JavaScript and the postMes-
sage API. The code of the subdomain computes the HMAC
of the challenge using the browser token. The HMAC is
then sent back to the original document and attached to the
subsequent login request (see Fig. 4). Please note that all
this communication happens within the browser.

4. IMPLEMENTATION
The implementation of our proposed authentication scheme

comprises three interacting components: the TokenManager
handles the browser token in the secure subdomain, the
Authenticator assembles necessary input for the login, and
the server-side AccountManager fits into legacy or new web
applications in order to handle browser challenges and re-
sponses.

4.1 Client-side Components
We first describe the client-side components, the Token-

Manager that is loaded in the iframe from the secure sub-
domain and the Authenticator that delivers the web appli-
cation’s challenge to the TokenManager and appends the
retrieved response to the HTML login form.

4.1.1 The TokenManager
The TokenManager implements the necessary functions to

fetch the browser token, compute the HMAC of the token
and the web application’s challenge, and return an error
message if no token is found. It runs in the domain context
of a secure subdomain. We use the CryptoJS5 library as an
implementation of the cryptographic functions.

The TokenManager uses the browser’s localStorage part
of the web storage [18]. Web storage is supported by all ma-
jor browsers on mobile and desktop platforms which makes
our authentication scheme platform and browser indepen-
dent. The localStorage is persistent, i.e., it is not cleared on
a regular basis as the sessionStorage is. The storage is lim-
ited in size per origin between 5 and 25 Mbytes depending
on the browser which, however, is far more than necessary
for our purposes. Web storage is meant for pairs of identi-
fiers and values where both must be strings. More complex
data structures can be stored as JSON objects [5] that are
easily converted to string and back. The TokenManager uses
JSON to store the username and the associated browser to-
ken.

The communication interface of the TokenManager is re-
stricted to a function that expects a challenge and a user-
name as input and provides an HMAC as the output (see
Fig. 4). The Authenticator’s direct access to the subdo-
main’s localStorage is prohibited by the same-origin pol-
icy [58]. So, the Authenticator needs to use the JavaScript
postMessage API [50] that enables two web documents in
a browser to communicate across origin boundaries in a se-
cure manner. A postMessage(msg, target) call expects a
message string and the target origin as parameters. The
receiving document needs to register an event handler to re-
ceive a message. The triggered event comes with additional
metadata provided by the browser, e.g., the origin of the
sender. This allows the receiver,i.e., the TokenManager, to
carefully check the sender’s authenticity.

4.1.2 The Authenticator
The HTML login form contains two additional hidden

fields for PhishSafe: AuthChallenge and AuthResponse.
The first contains the web application’s challenge, the second
is initially blank. The Authenticator reads the challenge and
the user’s username from the input field. It passes both argu-
ments to the TokenManager and reads back the answer. The
answer either contains the computed HMAC or an error. In

5http://code.google.com/p/crypto-js/

Figure 4: Domain-Isolated Token Storage

the success case, the Authenticator rewrites the login form’s
AuthResponse field to append the response. It prompts the
user if the TokenManager reported that no browser token
was found (see Fig. 5).

Figure 5: User Prompt If No Browser Token Is
Found

4.2 Server-side Component
The server-side part of PhishSafe consists of a single com-

ponent, the AccountManager.

4.2.1 The AccountManager
The AccountManager implements the server-side part of

our authentication scheme. We equipped WordPress with
the AccountManager as a plugin. The integration required
only reasonable efforts and no changes of the application
code due to the modular architecture of WordPress together
with the hooking feature. We consider the integration into
modular or new web applications as an easy task while nec-

essary efforts might be bigger for non-modular legacy appli-
cations.

The AccountManager issues the user’s browser token and
adds the invisible iframe and the Authenticator to the web
application’s login page. It generates a new challenge for
every user login, adds the AuthChallenge and AuthResponse

fields to the HTML login form, and checks incoming login
requests for valid responses.

The XSS attacker could inject a payload that reads the
user’s username, password, and the returned HMAC for au-
thentication. Having all this information, he can log into
the web application without a valid browser token. For
this reason, the AccountManager sets a cookie in the user’s
browser. This cookie has a random value that is saved by
the AccountManager together with the user’s current chal-
lenge. Only login requests that carry this cookie and the
valid response are processed. The cookie has the HttpOnly

and the Secure flags set to prevent it from being read by
the attacker’s payload or during plain http transport.

4.2.2 Security Configuration
Though it is not part of our attacker model, we leverage

two more modern security features to shelter from SSL strip-
ping [26] and pharming [49] attacks. A man-in-the-middle
attacker performing an SSL stripping attack could prevent
the user’s browser from using https and then read trans-
mitted information or even inject code into the document
loaded in the invisible iframe. A pharming attacker could
serve own code on behalf of the abused web application and
so bypass the same-origin policy. Both attackers could hi-
jack the secure browser token.

To overcome these attacks, the AccountManager adds
HTTP Strict Transport Security (HSTS) [19] and Public
Key Pinning (PKP) [11] policy headers to the web applica-
tion’s HTTP responses. HSTS makes sure that the browser
only contacts the website using https. There is an inher-
ent bootstrapping problem before the first request, i.e., the
website must ensure that the browser eventually receives the
HSTS header. Google Chromium and Mozilla Firefox over-
come this problem using a static list of pre-defined domains6.
The PKP policy prevents that a pharming attacker presents
his own certificate. After receiving the policy header, the
browser only accepts SSL certificates with the pinned pub-
lic key.

5. EVALUATION
We evaluate the security properties of our authentication

scheme and validate our design goals from Section 3.1.

5.1 Security Evaluation
We first explain how far PhishSafe protects users against

the attackers defined in Section 2.2. Then, we give details
of further security properties, and finally, we identify open
issues of the proposed scheme.

5.1.1 The Phishing Attacker
The phishing attacker counterfeits the design of a web

application in scope and lures victims. The latter can be
done either by email or by links and ads on other websites.
In any case, our proposed authentication scheme does not
prevent a victim from accessing the phishing page. However,

6http://www.chromium.org/sts

the information the phisher can obtain is not sufficient to
abuse the user’s account because the web application denies
access if no valid response is appended to the login request.

5.1.2 The XSS Attacker
The XSS attacker differs from the phishing attacker in his

ability to execute JavaScript code on vulnerable domains.
For instance, the XSS attacker could perform a reflected
XSS attack by sending a specially crafted link via email or
IM. The injected payload can read the username, password,
the current challenge for login and the respective response
if a browser token is stored in the browser. However, we as-
sumed that the attacker can not break cryptography, thus,
he can not compute the browser token from the challenge
and the response. The captured data is still insufficient
because it lacks the related cookie which is inaccessible to
JavaScript. Finally, we consider the task to develop invul-
nerable static code for the secure subdomain feasible such
that there is no attack vector for the XSS attacker.

5.1.3 Further Security Advantages
The proposed authentication approach comes with addi-

tional security features.
First of all, though running purely in the browser, the

scheme thwarts email-based phishing attempts. Phishers try
to evade browser-based protection by asking the victims to
reply to their phishing emails and give credentials in the
email. The obtained username and password, however, do
not give an attacker access to the user’s web account. We
consider phishing for the browser token to be infeasible as
it requires major efforts and advanced knowledge of a user
to read the token from the browser’s web storage.

Phishing attacks rely on unprepared users that disclose
credentials. This general observation holds true for any kind
of credentials a user may know. So, second authentication
factors that must be entered by the user in a web form are
inherently susceptible to phishing attacks, too. Examples
include one-time passcodes sent to the user’s cellphone or
generated by apps. Our approach utilizes complete URLs to
overcome second factor phishing. A user clicking on a link
not only proves access and knowledge but is also directed to
the right web application.

5.1.4 Open Issues
Next, we emphasize on potential attacks on our authenti-

cation scheme.
Our approach relies on the security of the user’s email

account. The attacker can request and read the confirmation
URL sent to the user if he has access to the email account
and the user’s credentials to the target web application. We
are here in line with today’s best practices for password reset
as virtually all web applications offer email-based processes
at least if no cell phone number is given or the attacker
pretends the cell phone is stolen.

An email account can not be protected if the confirmation
URL is sent to the same address. There are two options to
make sure that the user can always access the confirma-
tion URL: First, the user can provide an alternative email
account where the confirmation URL is sent to. Second,
the email provider can offer application-specific passwords7.
These passwords are chosen by the provider and not remem-
bered by the user. Instead, they are stored by client appli-

7https://support.google.com/accounts/answer/185833

cations to obtain access to the user’s account. Given an
application-specific password and an email client on a PC
or mobile device, access to the confirmation URL is assured.

An attacker can try to acquire the confirmation URL sent
to the user by making the user enter it into a prepared input
field on the phishing site. The easiest way to avoid this is
to make the user click on the link. Moreover, a highlighted
warning in the email reduces the attacker’s chances.

A window of vulnerability towards a pharming attacker re-
mains before the first PKP header is received by the user’s
browser (see Section 4.2.1). As long as the browser did not
pin the server’s public key, a pharming attacker can present
a spoofed certificate and submit malicious content. In the
future, a similar pre-defined list of certificates might be im-
plemented as it happened for HSTS.

Finally, though completely out of scope of our authenti-
cation scheme, fully fledged spyware can read and transmit
the browser token. Less elaborate keyloggers, however, are
ineffective because the browser token is never entered via
the keyboard.

5.2 Validation of Design Goals
In this section, we evaluate the compliance of PhishSafe

with the design goals given in Section 3.1.
Sidestep the arms race between phishers and the

anti-phishing blacklist community: Our approach does
not exploit features of phishing sites or emails for classifica-
tion. So, there is no motivation for actions and reactions.
In fact, we do not consider phishing activities at all but only
hide some piece of information from phishers. We argued in
the section above that phishers can hardly learn the browser
token.

Reduce reliance on the user: The security of the ap-
proach barely relies on the user. She neither needs to enter
her credentials only when a dedicated indicator is shown,
nor does she need to remember additional credentials. In
fact, the only change compared to her used workflow is the
decision if a computer is trusted or not and the click on
the confirmation link. The actual login procedure does not
change at all on regularly used browsers.

Avoid dependence on the browser’s interface: Phish-
Safe does not depend on the browser’s interface, nor does
it change the browser’s appearance. This feature not only
avoids confusing the user but is one important aspect of
cross-platform applicability (see below).

Waive the need for additional devices and the in-
stallation of protective tools PhishSafe only needs an
off-the-shelf browser and neither relies on extensions, nor
toolbars, nor third-party plug-ins, like Flash or Silverlight.
A second device is also not necessary.

Withstand the attackers defined in Section 2.2 We
showed in Section 5.1 that PhishSafe resists attacks by the
phishing attacker and the XSS attacker.

Further points: PhishSafe runs on mobile as well as
desktop browsers because all modern browsers support the
WebStorage and postMessage APIs. It does not rely on
visual indicators which makes it applicable on mobile devices
with limited screen size.

PhishSafe can easily complement other approaches. If the
browser maintains a blacklist of phishing sites, it can prevent
that the user reveals her credentials. Approaches leveraging
a secure password entry field to some degree also work to-

gether with PhishSafe even though details need to be sorted
out.

6. RELATED WORK
There is a long history of approaches to overcome phish-

ing attacks. We classify the existing body of work into three
categories: approaches that augment the visible user inter-
face with trust indicators (Sec. 6.1), approaches leveraging
sophisticated authentication protocols to prevent that the
real password is sent to the attacker (Sec. 6.2), single sign-
on protocols (Sec. 6.3), and approaches aiming to distinguish
between reliable and phishing sites (Sec. 6.4).

6.1 Augmenting the User Interface
A number of approaches tries to protect the user from

phishing attempts using individual authenticity features.
The overall goal is to ensure that the user enters her pass-
word only if a pre-shared symbol indicates trustworthiness.
Basic approaches just embed personalized images in the lo-
gin page [40, 48].

Other approaches require the installation of client-side ex-
tensions to tune the browser’s user interface. They display
custom names, logos, and the certification authority (CA) of
the visited website [17], open personalized windows includ-
ing user-defined pictures [6], combine images with custom
names of websites [56], or use colored frames to indicate the
website’s trust level [53, 55].

This class of approaches burdens the user with challenging
tasks, including

• remembering a visual authenticity feature [40, 48, 17,
56],

• tolerating adverse impacts on usability and browsing
experience [53],

• passing complex setup processes, for instance, choos-
ing site labels, master passwords, appropriate protec-
tion service providers, and finally start the protection
feature by hand [56],

• manually maintaining a list of supporting sites and
compare two displayed pictures to authenticate the
server before login [6], and

• install a dedicated browser [55].
Finally, these approaches are not portable and require

support by the server and the client, thus being subject to
a chicken-and-egg problem.

6.2 Sophisticated Authentication Protocols
The second class of phishing mitigation approaches ap-

plies changes to the common username and password based
authentication. The main goal is to not submit the pass-
word in plaintext to an unauthenticated remote server but
mutually authenticate client and server [16, 42, 47], utilize
a zero-knowledge protocol to avoid transmitting confiden-
tial information [22], check for user-specific knowledge that
changes over time [31], use trusted second devices to es-
tablish an authenticated session [34], generate site-specific
passwords from a seed [39], or use bookmarks as a secure
entry point [1].

The implementation of non-standard authentication pro-
tocols by design requires effort on both communication par-
ties for support. The user either needs to store and main-
tain a particular bookmark for every protected website [1],
remember to activate protection before entering her creden-
tials [39], install a plugin [47] or a browser toolbar and reg-

ularly verify that it is not spoofed [42], use a dedicated
browser [22] or a second device that must be trustwor-
thy but also able to establish a direct connection with the
browser [34], or remember every past action with respect
to this account [31], while some approaches are not imple-
mented or practically evaluated [16].

6.3 Single Sign-On
A set of so-called single sign-on protocols aims at releasing

the user from maintaining one unique password for each web
account respectively, among them OpenID [36], Mozilla Per-
sona [30] (aka BrowserID), SAML [24], and Shibboleth [20].
They allow a user to login once with a single authority in
order to access several accounts at different providers.

The distributed authorization protocol OAuth [33] is used
in some cases to log into third party web applications, too.
A previous login with the provider, usually a social network,
is required.

These protocols decrease credential management overhead
caused by the trend of an increasing number of web accounts.
Nevertheless, the user must log in once in order to apply
such a protocol. In this respect, PhishSafe complements
those approaches to secure the one remaining login.

6.4 Detecting Phishing Sites
This class of approaches tries to identify phishing sites

in order to warn the user and prevent information leakage.
There are three main vectors for site classification: First,
approaches use web crawlers to check websites for phish-
ing features [51, 54, 13]. These approaches utilize machine
learning algorithms to update their classification criteria.
They generate blacklists of suspicious domains. Browsers
can download those blacklists and warn the user whenever
she accesses a listed site. The delay between the setup of a
phishing site and the time it is listed in the browsers grants
phishers a temporal advance.

Approaches of the second vector attempt to classify visited
websites in real time [21, 37, 3, 38, 27]. These approaches do
not suffer the time delay the blacklisting approaches have.
However, they create an overhead for examination for every
page access.

Finally, some approaches feed suspicious websites with bo-
gus credentials and observe the reaction on those spoofed
login requests [2, 57, 41]. The point is that phishing sites
supposedly accept all combinations of username and pass-
word or always answer with an error message.

All described vectors for classification of phishing sites are
part of an arms race with phishers. The approaches rely on
features that can be easily changed by phishers to circum-
vent classification. In a next step, the classification criteria
can be adjusted and so on. Moreover, classification is always
prone to mistakes, i.e., genuine websites may be classified as
phishing attempts while phishing sites are treated as gen-
uine. Nevertheless, phishing detection approaches can serve
as a first line of defense and complement PhishSafe to pre-
vent leakage of username and password.

7. CONCLUSION
In the course of this paper, we analyzed the root causes

for the continuing prevalence of phishing attempts and clas-
sified existing solutions into three main categories: incom-
plete countermeasures prone to false positives and false neg-
atives, countermeasures cumbersome for the user compared

to common logon processes, and countermeasures relying
on browser extensions or toolbars, thus, expecting risk-
awareness by the user and excluding users of not supported
browsers and platforms.

Then, we identified the user as the weakest link when it
comes to phishing protection. She can neither be expected to
apply cumbersome countermeasures, nor install protective
tools, nor take care of security indicators. We presented
PhishSafe, a reliable approach to overcome phishing attacks,
that runs in browsers out of the box and barely changes
known logon processes. The user must only decide if she uses
her private browser or not. This way, PhishSafe implements
a two-factor authentication scheme where the second factor
is only accessible to the genuine web application but not to
the phisher nor to the user. Without knowing the second
factor, the user cannot disclose the necessary information
for account access to an attacker.

PhishSafe can be easily deployed by web application
providers and is not susceptible to the chicken-and-egg prob-
lem. Moreover, it complements SSO protocols and anti-
phishing blacklists.

Acknowledgments
This work was in parts supported by the EU Project Web-
Sand (FP7-256964), https://www.websand.eu. The sup-
port is gratefully acknowledged.

8. REFERENCES
[1] B. Adida. BeamAuth: Two-Factor Web

Authentication with a Bookmark. In Proceedings of
the 14th ACM Conference on Computer and
Communications Security (CCS ’07), 2007.

[2] M. Chandrasekaran and R. Chinchani. PHONEY:
Mimicking User Response to Detect Phishing Attacks.
In International Symposium on a World of Wireless
Mobile and Multimedia Networks (WoWMoM 2006),
2006.

[3] N. Chou, R. Ledesma, Y. Teraguchi, D. Boneh, and
J. C. Mitchell. Client-Side Defense against Web-based
Identity Theft. In Proceedings of the 11th Annual
Network and Distributed System Security Symposium
(NDSS ’04), 2004.

[4] D. Crocker, T. Hansen, and M. Kucherawy.
DomainKeys Identified Mail (DKIM) Signatures. RFC
6376, http://tools.ietf.org/html/rfc6376,
(09/03/13).

[5] D. Crockford. The application/json Media Type for
JavaScript Object Notation (JSON). RFC 4627,
http://tools.ietf.org/html/rfc4627, (09/03/13).

[6] R. Dhamija and J. D. Tygar. The Battle Against
Phishing: Dynamic Security Skins. In Proceedings of
the 2005 Symposium on Usable Privacy and Security
(SOUPS ’05), 2005.

[7] J. S. Downs, M. B. Holbrook, and L. F. Cranor.
Decision Strategies and Susceptibility to Phishing. In
Symposium On Usable Privacy and Security (SOUPS),
2006.

[8] Dr. Web. New Trojan steals short messages. [online],
http://news.drweb.com/show/?i=3549, (09/12/13).

[9] S. Egelman, L. F. Cranor, and J. Hong. You’ve Been
Warned: An Empirical Study of the Effectiveness of

Web Browser Phishing Warnings. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (CHI ’08), 2008.

[10] EMC Corporation. RSASecurID. [online],
http://www.emc.com/security/rsa-securid.htm,
(09/12/13).

[11] C. Evans, C. Palmer, and R. Sleevi. Public Key
Pinning Extension for HTTP. Internet-Draft,
http://tools.ietf.org/html/

draft-ietf-websec-key-pinning-08, (09/10/13).

[12] A. P. Felt and D. Wagner. Phishing on Mobile Devices.
In Web 2.0 Security and Privacy (W2SP), 2011.

[13] I. Fette, N. Sadeh, and A. Tomasic. Learning to
Detect Phishing Emails. In Proceedings of the 16th
international conference on World Wide Web (WWW
’07), 2007.

[14] E. Gabrilovich and A. Gontmakher. The Homograph
Attack. Communications of the ACM, 45, 2002.

[15] Google. Authenticator. [online],
http://code.google.com/p/google-authenticator/,
(09/12/13).

[16] M. G. Gouda, A. X. Liu, L. M. Leung, and M. A.
Alam. SPP: An anti-phishing single password protocol.
Computer Networks, 51(13):3715 – 3726, 2007.

[17] A. Herzberg and A. Jbara. Security and identification
indicators for browsers against spoofing and phishing
attacks. ACM Transactions on Internet Technology
(TOIT), 2008.

[18] I. Hickson. Web Storage. [online],
http://www.w3.org/TR/webstorage/, (09/10/13).

[19] J. Hodges, C. Jackson, and A. Barth. HTTP Strict
Transport Security (HSTS). RFC 6797,
http://tools.ietf.org/html/rfc6797, (09/10/13).

[20] Internet2. Shibboleth. [online],
http://shibboleth.net/.

[21] E. Kirda and C. Kruegel. Protecting Users agains
Phishing Attacks with AntiPhish. In 29th Annual
International Computer Software and Applications
Conference (COMPSAC 2005), 2005.

[22] P. Knickerbocker. Combating Phishing through
Zero-Knowledge Authentication. Master’s thesis,
Graduate School of the University of Oregon, 2008.

[23] H. Krawczyk, M. Bellare, and R. Canetti. HMAC:
Keyed-Hashing for Message Authentication. RFC
2104, https://tools.ietf.org/html/rfc2104,
(09/03/13).

[24] H. Lockhart and B. Campbell. SAML V2.0. https:
//www.oasis-open.org/committees/download.php/

27819/sstc-saml-tech-overview-2.0-cd-02.pdf,
March 2008.

[25] C. Ludl, S. McAllister, E. Kirda, and C. Kruegel. On
the Effectiveness of Techniques to Detect Phishing
Sites. In Proceedings of the 4th international
conference on Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA ’07), 2007.

[26] M. Marlinspike. New Tricks For Defeating SSL In
Practice. Talk at BlackHat ’09,
http://www.blackhat.com/presentations/

bh-dc-09/Marlinspike/

BlackHat-DC-09-Marlinspike-Defeating-SSL.pdf,
(09/10/13).

[27] E. Medvet, E. Kirda, and C. Kruegel.
Visual-Similarity-Based Phishing Detection. In
Proceedings of the 4th International Conference on
Security and Privacy in Communication Networks
(SecureComm ’08), 2008.

[28] Microsoft. SenderID. [online],
http://www.microsoft.com/senderid, (09/03/13).

[29] K. D. Mitnick and W. L. Simon. The Art of
Deception: Controlling the Human Element of
Security. John Wiley & Sons, 2002.

[30] Mozilla. Persona. [online], https://developer.
mozilla.org/en-US/docs/Mozilla/Persona,
(09/03/13).

[31] N. Nikiforakis, A. Makridakis, E. Athanasopoulos, and
E. P. Markatos. Alice, What Did You Do Last Time?
Fighting Phishing Using Past Activity Tests. In
Proceedings of the 3rd European Conference on
Computer Network Defense, 2009.

[32] Y. Niu, F. Hsu, and H. Chen. iPhish: Phishing
Vulnerabilities on Consumer Electronics. In
Proceedings of the 1st Conference on Usability,
Psychology, and Security (UPSEC ’08), 2008.

[33] OAuth. [online], http://oauth.net/, (09/03/13).

[34] B. Parno, C. Kuo, and A. Perrig. Phoolproof Phishing
Prevention. In Proceedings of the 10th International
Conference on Financial Cryptography and Data
Security (FC’06), 2006.

[35] T. Raffetseder, E. Kirda, and C. Kruegel. Building
Anti-Phishing Browser Plug-Ins: An Experience
Report. In Proceedings of the Third International
Workshop on Software Engineering for Secure Systems
(SESS ’07), 2007.

[36] D. Recordon and D. Reed. OpenID 2.0: a platform for
user-centric identity management. In DIM, 2006.

[37] V. P. Reddy, V. Radha, and M. Jindal. Client Side
Protection from Phishing Attack. International
Journal of Advanced Engineering Sciences and
Technologies (IJAEST), pages 39–45, 2011.

[38] A. P. E. Rosiello, E. Kirda, C. Kruegel, and
F. Ferrandi. A Layout-Similarity-Based Approach for
Detecting Phishing Pages. In Proceedings of the third
International Conference on Security and Privacy in
Communication Networks (SecureComm 2007), 2007.

[39] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger Password Authentication Using
Browser Extensions. In Proceedings of the 14th Usenix
Security Symposium (USENIX 2005), 2005.

[40] RSA Data Security. SiteKey. [Hosted at Bank of
America], https://www.bankofamerica.com/privacy/
online-mobile-banking-privacy/sitekey.go,
(08/01/13).

[41] H. Shahriar and M. Zulkernine. PhishTester:
Automatic Testing of Phishing Attacks. In Fourth
International Conference on Secure Software
Integration and Reliability Improvement (SSIRI), 2010.

[42] M. Sharifi, A. Saberi, M. Vahidi, and M. Zorufi. A
Zero Knowledge Password Proof Mutual
Authentication Technique Against Real-Time
Phishing Attacks. In Third International Conference
on Information Systems Security (ICISS 2007), 2007.

[43] S. Sheng, B. Wardman, G. Warner, L. F. Cranor,
J. Hong, and C. Zhang. An Empirical Analysis of
Phishing Blacklists. In Sixth Conference on Email and
AntiSpam (CEAS 2009), 2009.

[44] The Anti-Phishing Working Group (APWG). Global
Phishing Survey: Domain Name Use and Trends in
2H2012. [online], http://docs.apwg.org/reports/
APWG_GlobalPhishingSurvey_2H2012.pdf,
(09/03/13).

[45] The Anti-Phishing Working Group (APWG). Phishing
Activity Trends Report, 1st Quarter 2013. [online],
http://docs.apwg.org/reports/apwg_trends_

report_q1_2013.pdf, (09/03/13).

[46] The Anti-Phishing Working Group (APWG). Phishing
Attack Trends Reports. [online],
http://www.apwg.org/resources/apwg-reports/,
(09/03/13).

[47] H. Tout and W. Hafner. Phishpin: An Identity-Based
Anti-Phishing Approach. In International Conference
on Computational Science and Engineering (CSE ’09),
2009.

[48] L. Varteressian. Yahoo! Sign-In Seal. [online], http:
//security.yahoo.com/sign-seal-000000996.html,
(08/01/13).

[49] B. Violino. After Phishing? Pharming! [online],
http://www.csoonline.com/article/220629/

after-phishing-pharming-, (09/10/13).

[50] WHATWG. Cross-document messaging. [online],
http://www.whatwg.org/specs/web-apps/

current-work/multipage/web-messaging.html,
(09/06/13).

[51] C. Whittaker, B. Ryner, and M. Nazif. Large-Scale
Automatic Classification of Phishing Pages. In
Proceedings of the 17th Annual Network and
Distributed System Security Symposium (NDSS ’10),
2010.

[52] M. Wu, R. C. Miller, and S. L. Garfinkel. Do Security
Toolbars Actually Prevent Phishing Attacks? In
Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems (CHI ’06), 2006.

[53] M. Wu, R. C. Miller, and G. Little. Web Wallet:
Preventing Phishing Attacks by Revealing User
Intentions. In Proceedings of the Second Symposium on
Usable Privacy and Security (SOUPS ’06), 2006.

[54] G. Xiang, J. Hong, C. P. Rose, and L. Cranor.
CANTINA+: A Feature-rich Machine Learning
Framework for Detecting Phishing Web Sites. ACM
Transactions on Information and System Security
(TISSEC), 2011.

[55] Z. E. Ye and S. Smith. Trusted Paths for Browsers. In
Proceedings of the 11th USENIX Security Symposium
(USENIX 2002), 2002.

[56] K.-P. Yee and K. Sitaker. Passpet: Convenient
Password Management and Phishing Protection. In
Proceedings of the Second Symposium on Usable
Privacy and Security (SOUPS ’06), 2006.

[57] C. Yue and H. Wang. Anti-Phishing in Offense and
Defense. In Annual Computer Security Applications
Conference (ACSAC 2008), 2008.

[58] M. Zalewski. Browser Security Handbook, part 2.
[online], http://code.google.com/p/browsersec/
wiki/Part2#Same-origin_policy, (09/03/13).

[59] Y. Zhang, S. Egelman, L. Cranor, and J. Hong.
Phinding Phish: Evaluating Anti-Phishing Tools. In
Proceedings of the 14th Annual Network and
Distributed System Security Symposium (NDSS 2007),
2007.

