
The Unexpected Dangers of Dynamic JavaScript

Sebastian Lekies
Ruhr-University Bochum

paper@sebastian-lekies.de

Ben Stock
FAU Erlangen-Nuremberg

ben.stock@fau.de

Martin Wentzel
SAP SE

martin.wentzel@sap.com

Martin Johns
SAP SE

martin.johns@sap.com

Abstract
Modern Web sites frequently generate JavaScript on-the-
fly via server-side scripting, incorporating personalized
user data in the process. In general, cross-domain access
to such sensitive resources is prevented by the Same-
Origin Policy. The inclusion of remote scripts via the
HTML script tag, however, is exempt from this policy.
This exemption allows an adversary to import and exe-
cute dynamically generated scripts while a user visits an
attacker-controlled Web site. By observing the execution
behavior and the side effects the inclusion of the dynamic
script causes, the attacker is able to leak private user data
leading to severe consequences ranging from privacy vi-
olations up to full compromise of user accounts.

Although this issues has been known for several years
under the term Cross-Site Script Inclusion, it has not
been analyzed in-depth on the Web. Therefore, to sys-
tematically investigate the issue, we conduct a study on
its prevalence in a set of 150 top-ranked domains. We
observe that a third of the surveyed sites utilize dynamic
JavaScript. After evaluating the effectiveness of the de-
ployed countermeasures, we show that more than 80%
of the sites are susceptible to attacks via remote script
inclusion. Given the results of our study, we provide a
secure and functionally equivalent alternative to the use
of dynamic scripts.

1 Introduction

Since its beginning in the early nineties, the Web evolved
from a mechanism to publish and link static documents
into a sophisticated platform for distributed Web applica-
tions. This rapid transformation was driven by two tech-
nical cornerstones:

1. Server-side generation of code: For one, on the
server side, static HTML content was quickly replaced
by scripting to dynamically compose the Web server’s
HTTP responses and the contained HTML/JavaScript on

the fly. In turn, this enabled the transformation of the
Web’s initial document-centric nature into the versatile
platform that we know today.

2. Browser-driven Web front-ends: Furthermore, the
Web browser has proven to be a highly capable container
for server-provided user interfaces and application logic.
Thanks to the flexible nature of the underlying HTML
model and the power of client-side scripting via Java-
Script, the server can push arbitrary user interfaces to the
browser that rival their counterparts of desktop applica-
tion. In addition, and unlike monolithic desktop appli-
cations, however, browser-based UIs enable easy incor-
poration of content from multiple parties using HTML’s
inherent hypertext capabilities.

Based on this foundation, the recent years have shown
an ongoing shift from Web applications that host the ma-
jority of their application logic on the server side towards
rich client-side applications, which use JavaScript to re-
alize a significant portion of their functionality within the
user’s browser.

With the increase of the functionality implemented on
the client side, the necessity for the JavaScript code to
gain access to additional user data rises natrually. In this
paper, we explore a specific technique that is frequently
used to pull such data from the server to the client-side:
Dynamic JavaScript generation.

Similar to HTML, which is often generated dynam-
ically, JavaScript may also be composed on the fly
through server-side code. In this composition process,
user-specific data is often included in the resulting script
code, e.g., within the value of a variable. After deliv-
ering the script to the browser, this data is immediately
available to the client-side logic for further processing
and presentation. This practice is potentially dangerous
as the inclusion of script files is exempt from the Same-
Origin Policy [23]. Therefore, an attacker-controlled
Web page is able to import such a dynamically gener-
ated script and observe the side effects of the execu-
tion, since all included scripts share the global object

of the embedding web document. Thus, if the script
contains user-specific data, this data might be accessi-
ble to other attacker-controlled JavaScript. Although this
attack, dubbed Cross-Site Script Inclusion (XSSI), has
been mentioned within the literature [31], the prevalence
of flaws which allow for this attack vector has not been
studied on real-world Web sites.

In this paper we therefore present the first, systematic
analysis of this vulnerability class and provide empirical
evidence on its severeness. First, we outline the general
attack patterns and vectors that can be used to conduct
such an attack. Furthermore, we present the results of an
empirical study on several high-profile domains, show-
ing how these domains incorporate dynamic scripts into
their applications. Thereby, we find evidence that many
of these scripts are not or only inadequately protected
against XSSI attacks. We demonstrate the sever conse-
quences of these data leaks by reporting on real-world
exploitation scenarios ranging from de-anonymization,
to targeted phishing attacks up to complete compromise
of a victim’s account.

To summarize, we make the following contributions:

• We elaborate on different ways an attacker is capa-
ble of leaking sensitive data via dynamically gener-
ated scripts, enabled by the object scoping and dy-
namic nature of JavaScript.

• We report on the results of an empirical study
on several high-ranked domains to investigate the
prevalence of dynamic scripts.

• Using the data collected during our empirical study,
we show that many dynamic scripts are not properly
protected against XSSI attacks. To demonstrate the
severity of the outlined vulnerabilities, we present
different exploitation scenarios ranging from de-
anonymization to complete hijacking of a victim’s
account.

• Based on the observed purposes of the dynamic
scripts encountered in our study, we discuss secure
ways of utilizing such data without the use of dy-
namically generated scripts.

The remainder of the paper is structured as follows: In
Section 2, we explain the technical foundations needed
for rest of the paper. Section 3 then covers the general at-
tack patterns and techniques to exploit cross-domain data
leakage vulnerabilities. In Section 4, we report on the re-
sults of our empirical study and analyze the underlying
purposes of dynamic scripts. Furthermore, in Section 5,
we provide a scheme that is functionally equivalent, but
is not prone to the attacks described in this paper. Sec-
tion 6 covers related work, Section 7 gives an outlook
and Section 8 concludes the paper.

2 Technical Background

In this section, we cover the technical background rele-
vant for this work.

2.1 The Same-Origin Policy
The Same-Origin Policy (SOP) is the principal security
policy in Web browsers. The SOP strongly separates mu-
tually distrusting Web content within the Web browser
through origin-based compartmentalization [23]. More
precisely, the SOP allows a given JavaScript access only
to resources that have the same origin. The origin is de-
fined as the triple consisting of scheme, host, and port
of the involved resources. Thus, for instance, a script
executed under the origin of attacker.org is not able
to access a user’s personal information rendered under
webmail.com.

While JavaScript execution is subject to the SOP, the
same does not hold true for cross-domain inclusion of
Web content using HTML tags. Following the initial hy-
pertext vision of the WWW HTML-tags, such as image,
may reference resources from foreign origins and include
them into the current Web document.

Using this mechanism, the HTML script tag can
point to external script resources, using the tag’s src at-
tribute. When the browser encounters such a tag, it issues
a request to the foreign domain to retrieve the referenced
script. Important to note in this instance is the fact that
the request also carries authentication credentials in the
form of cookies which the browser might have stored for
the remote host. When the response arrives, the script
code inherits the origin of the including document and is
executed in the context of the hosting page. This mecha-
nism is used widely in the Web, for instance to consume
third party JavaScript services, such as traffic analysis or
advertisement reselling [24].

2.2 JavaScript Language Features
In the following, we cover the most important JavaScript
concepts necessary for the rest of the paper.

Scoping In JavaScript, a scope is “a lexical environ-
ment in which a function object is executed” [6]. From a
developer’s point of view, a scope is the region in which
an identifier is defined. While C++ or Java make use
of block scoping, JavaScript utilizes so-called function
scoping. This means that the JavaScript engine creates
a new scope for each new function it encounters. As a
consequence, an identifier that is locally defined in such
a function is associated with the corresponding scope.
Only code that is defined within the same function is thus
able to access such a variable residing in the local scope,

whereas global variables are associated with the global
scope.

Listing 1 shows an example for local and global vari-
ables. A local variable in JavaScript can be created by
utilizing the var keyword. All variables defined out-
side of a function are associated with the global scope,
whereas code within a function can define variables in
the global scope by either omitting the var keyword or
explicitly assigning to window.varname.

Listing 1 Example for global and local variables
// A global variable

var globalVariable1 = 5;

function globalFunction(){
// A local variable

var localVariable = 2;

// Another global variable

globalVariable2 = 3;

// Yet another global variable

window.globalVariable3 = 4;
}

The Prototype Chain As opposed to classical pro-
gramming languages such as C++ or Java, JavaScript is a
prototype-based language. This means that JavaScript’s
inheritance is not based on classes but directly on other
objects, whereas “each object has a link to another ob-
ject called its prototype” [21]. On creation of an object,
it either automatically inherits from Object.prototype

or if a prototype object is explicitly provided, the proto-
type property will point to this object. On access to an
object’s property, the JavaScript runtime checks whether
the current object contains a so-called own property with
the corresponding name.

If no such property exists, the object’s prototype is
queried for the same property and if lookup fails again,
the process is recursively repeated for the object’s pro-
totypes. Hence, objects in JavaScript form a so-called
prototype chain. Listing 2 gives a commented example
for this behavior.

Listing 2 The prototype chain
var object1 = {a: 1};
// object1 ---> Object.prototype ---> null

var object2 = Object.create(object1);
// object2 ---> object1

// ---> Object.prototype ---> null

console.log(object2.a); // 1 (inherited)

3 Cross-Domain Data Leakages

In this section, we show how an adversary can utilize
an external JavaScript file, which is dynamically gener-
ated at runtime, to leak security sensitive data. After first
covering the different types of these dynamic scripts, we
elaborate on the attacker model and then demonstrate dif-
ferent attack vectors that can be leveraged to leak sensi-
tive data from such a script.

3.1 Dynamic Scripts
As discussed in Section 2.1, Web pages can utilize
script-tags to import further JavaScript resources. For
the remainder of this paper, we define the term dynamic
script to describe such a JavaScript resource in case it
is generated by the Web server on the fly via server-side
code.

As opposed to static scripts, the contents of dynamic
scripts may vary depending on factors such as input pa-
rameters or session state. In the context of this paper, the
latter type is of special interest: If a dynamic JavaScript
is generated within a user’s authenticated Web session,
the contents of this script may contain privacy or secu-
rity sensitive data that is bound to the user’s session data.
Thus, an execution of the script can potentially lead to
side effects which leak information about this data.

3.2 Attack Method
HTML script tags are not subject to the Same-Origin
Policy (see Section 2.1). Hence, script resources can be
embedded into cross-domain Web pages. Although such
cross-domain Web pages cannot access the source code
of the script directly, this inclusion process causes the
browser to load and execute the script code in the context
of the cross-domain Web page, allowing the importing
page to observe the script’s behavior. If a dynamic script
exposes side effects dependent on sensitive data in the
script code, the execution of such a script may leak the
secret data.

Figure 1 depicts an example attack. A user is au-
thenticated to his mail provider at webmail.com, thus
his browser automatically attaches the corresponding
session cookies to all requests targeting webmail.com,
which utilizes session-state dependent dynamic scripts.
Thus, whenever a user is logged in, the script at
webmail.com/script.js creates a global variable
containing the current user’s email address. In the
same browser, the user now navigates to an attacker-
controlled Web site at attacker.org. The attacker in-
cludes the dynamic script in his own Web page and sub-
sequently, the browser requests the script with attached
authentication cookies. Although the script originates

h"p://a"acker.org.

h"p://a"acker.org.
Browser.

h"p://webmail.com.

JavaScript.

Figure 1: Attacker Model

from webmail.com, it is now executed in the context
of attacker.org, creating the global variable with the
user’s email in the corresponding context. The global
variable is now accessible to any other script executed
by attacker.org. Hence, the attacker can simply ac-
cess the value of this global variable, effectively leaking
the user’s email address.

3.3 Attack Vectors
As previously explained, an attacker is able to leak sen-
sitive user data by including a script from a different do-
main and observing the results of the execution. In this
section we outline different situations in which sensitive
data is accessible to an attacker after the included script
has been executed.

3.3.1 Global Variables

As noted in the previous section, global variables created
by a dynamic script can be accessed by any other script
executed on the same Web document. Hence, whenever
sensitive user data is assigned to such a global variable
inside a script, an attacker can gain access to the corre-
sponding data. In order to do so, he simply includes the
script and waits for the global variable to be created. As
soon as the value assignment has occurred, the attacker’s
code can read the sensitive data and leak it back to his
backend.

3.3.2 Redefinition of Global APIs

Due to JavaScript’s dynamic nature, (almost) any func-
tion can be overwritten by an attacker, including a num-
ber of globally available APIs. If a dynamic script passes
a security-sensitive value to such a function, the attacker

may overwrite it beforehand and hence retrieve the se-
cret value. Listing 3 demonstrates how an attacker can,
for example, change the behavior of the global function
JSON.stringify. In order to conduct an attack, the at-
tacker overrides the function first and then includes a dy-
namic script which passes a sensitive data value to the
function. When the user visits the attacker’s Web site,
his browser retrieves and executes the dynamic script.
Rather than invoking the native JSON.stringify func-
tion, the contained code invokes the attacker-controlled
function. In this case, instead of serializing the object,
the function sends the user’s data back to the attacker’s
server.

Listing 3 Passing a variable to a global function
// Attacker’s script overwriting a global function

JSON.stringify = function(data){
sendToAttackerBackend(data);

}

//Within the dynamic script

function myFunction() {
var myVar = { secret: "secret value"};

// Calling a predefined global function

return JSON.stringify(myVar);
}

3.3.3 Prototype Tampering

As outlined in the previous section, variables are avail-
able in the scope in which they were defined unless the
var keyword is omitted. Listing 4 shows an example of
code making use of this paradigm. The function allocates
an array with three secret values using the var keyword
and therefore, as it seems, protects the array from access
by outside code. As discussed in Section 2.2, JavaScript
is a prototype-based language. Hence, when requesting
a property of an object, the JavaScript interpreter walks
up the prototype chain until it finds a matching property.
In our example shown in Listing 4, the function slice

is called on the array named arr. By default, an array
object does not provide the slice function itself. There-
fore, the call is made to the function in the array’s proto-
type, which points to the object Array.prototype. In
a scenario where the script is included without any ma-
licious intent, the programmer may assume that the call
will eventually trigger invocation of the slice method
for arrays.

This behavior may, however, be changed by an at-
tacker. Listing 5 depicts a small snippet of code that is
provided by the attacker. Similar to what we discussed
earlier with respect to overwriting global functions, the
snippet overwrites the slice method in the array’s pro-

Listing 4 Variable protected in a closure
(function(){

var arr = ["secret1","secret2","secret3"];
// intents to slice out first entry

var x = arr.slice(1);
...

})();

totype. Since by default all arrays in JavaScript share the
same prototype, the call to slice in Listing 4 is passed
to the attacker-provided function. Since the function is
called on the arr object, the attacker can use the this

keyword to gain a reference to the object. Therefore,
rather than exhibiting the intended behavior of slicing
out a part of the array, the attacker’s code now sends the
otherwise properly protected information back to the at-
tacker. This attack works for any object that has a glob-
ally accessible prototype, i.e., it is feasible on any built-in
objects such as Strings or Functions.

Listing 5 Leaking data via the this keyword
Array.prototype.slice = function(){

//leaks ["secret1","secret2","secret3"]

sendToAttackerBackend(this);
};

3.4 Distinction towards CSRF
On first view, the described attack method is related to
Cross-site Request Forgery (CSRF) [1], as it follows a
similar attack pattern.

In fact, leaking sensitive information via cross-domain
script includes belongs to a larger class of Web attacks
which function via creating authenticated requests in the
context of an authenticated Web user (including CSRF,
ClickJacking [12] and reflected Cross-site Scripting [2]).

However, the goal and consequences of the attack dif-
fer significantly from other attack variants: CSRF is an
attack in which an attacker generates requests to cause
state-changing actions in the name of the user. Thereby
the attacker is by no means able to read content from a
response to a CSRF request. To prevent CSRF devel-
opers are advised to conduct state-changing actions only
via HTTP POST requests and to protect all these post
requests with CSRF tokens.

As opposed to this, dynamic scripts are neither de-
signed to conduct state-changing actions on the server-
side nor are these scripts ever fetched via POST requests.
Those scripts are stateless and are fetched via GET re-
quests through script tags and, hence, are not classified
as a critical endpoint in the context of CSRF, i.e., not
contained in the application’s CSRF protection surface.

4 Empirical Study

In this section we report on the results of an empirical
study designed to gain insights into the prevalence and
exploitability of data leakages due to the use of dynamic
script generation on the server side. We first discuss
the methodology of our study and report on the general
prevalence of dynamically generated JavaScript files in
the wild. Based on the gathered data, we analyze the un-
derlying purposes of these scripts, discuss the types of
security-sensitive data contained in the scripts and high-
light who these can be leaked, allowing us specific ex-
ploits against a number of sites. We end the section with
a discussion of situations in which we could not exploit
a dynamic script due to the use of adequate protection
measures.

4.1 Methodology
In the following, we cover our research questions, ex-
plain our detection methodology and describe our data
set.

4.1.1 Research Questions

This study provides an in-depth analysis of dynamic
script includes. Before diving into the security aspects of
these scripts, we aim at collecting data on this technique
in general. Hence, we are first interested in the gen-
eral prevalence of dynamically generate scripts. More
specifically, the goal is to find out how common dynamic
script generation is in today’s Web and how often these
dynamic scripts are dependent on a user’s session state.
The study sheds light on the purpose of these scripts and
the contained data. Finally, we investigate the security
aspects by investigating the exploitability and discussing
potential countermeasures.

4.1.2 Detecting State-dependent Scripts

As a basis for our empirical study, we needed a means to
easily detect state-dependent dynamic scripts. Therefore,
we implemented a Chrome browser extension that fulfills
two separate tasks:

1. Collecting scripts: The first step towards analyz-
ing Web pages for dynamic scripts is the collection
of all external script resources included by the Web
page. For this purpose, we created a browser ex-
tension that collects all included scripts of a page
by using a so-called Mutation Observer [22]. As
soon as a new script node is found, it is immediately
passed on to our analysis module.

2. Detecting dynamic code generation based on au-
thentication credentials: Whenever the analysis is

invoked, our extension requests the script file twice:
once with authentication credentials attached to the
request, and once without authentication creden-
tials. After the responses have been received, the
extension compares both and if they differ, stores
them in a central database for later analysis.

In order to allow for valid credentials to be sent
along with the request, a necessary prerequisite are
valid session cookies. To obtain these, the user
needs to manually log in to the application under
investigation beforehand.

The final step in this phase is the manual analysis
of the gathered data to precisely determine which
scripts have a dynamic nature depending on the
user’s session state rather than randomness (such as
banner rotation scripts).

4.1.3 Data Set

Unlike general vulnerabilities, the detection of potential
data leakages through dynamic JavaScript generation re-
quires an active user account (or a similar stateful rela-
tionship) at the tested site, so that the scripts are gener-
ated in the context of an authenticated Web session.

Since this requires initial manual registration and ac-
count set up on sites we want to test, the size and the na-
ture of our data set is limited. We therefore chose the 150
highest ranking (according to Alexa) Web pages match-
ing the following criteria:

1. Account registration and login is freely available for
anyone. This excludes, services that have only paid
subscription models or require country-dependent
prerequisites (such as a mobile phone number).

2. Available in either German, English or a Web site
which can be translated using Google Translate. If
this is not given, the set up of meaningful user ac-
counts was not feasible.

3. Not a duplicate or localized variant of an already
investigated site (e.g. google.com vs. google.co.in)

After manually registering accounts on these sites,
we investigated the site employing the methodology and
techniques previously explained, thoroughly interacting
with the complete functionality of the sites by adding,
processing and viewing plausible data within the differ-
ent Web applications.

4.2 Prevalence of Dynamic Scripts
The first goal of our study was to count the number of
Web sites that make use of dynamic script generation.
In the course of this study, using our aforementioned

methodology, we gathered a total of 9,059 script files
spread across 334 domains and their subdomains. Al-
though our data set only consists of 150 different do-
mains, we gathered scripts from such a large number of
domains due to the fact that the investigated Web sites in-
clude third-party frames pointing to, e.g., advertisement
providers. In a first step, we therefore filtered out scripts
from all sites not directly related to the domains under
investigation.

Out of these, we found that over half of the sites—81
out of the 150 analyzed domains—utilized some form of
dynamic script generation. In a subsequent manual ex-
amination step we removed dynamic scripts which only
exposed changes in apparently random token values (see
below for details), resulting in 209 unique scripts on 49
domains, that were dependent on a user’s session state.
In relation to our initial data set of 150 domains, this
shows that the usage of state-dependent dynamic scripts
is widespread, namely one third of the investigated do-
mains.

4.3 Purposes of Dynamic Scripts

We analyzed the applications to ascertain the underlying
purpose motivating the utilization of the dynamic scripts.
In doing so, we found three categories of use cases as
well as a few purposes which could not be categorized.
Since these were only single use cases specific to one
application, we do not outline these any further but in-
stead put them in the Others category. The results of our
categorization are depicted in Table 1, showing the total
amount of domains per category as well as the highest
Alexa rank.

The most commonly applied use case was retrieval
of user-specific data, such as the name, email address
or preferences for the logged-in user. This information
was used both to greet users on the start page as well as
to retrieve user-provided settings and profile data on the
corresponding edit pages. We observed that a number
of Web applications utilized modal dialogs to present the
profile data forms to the user, whereas the HTML code of
said form was embedded into the document already and
all currently stored values were retrieved by including a
dynamic script.

The second category of scripts we found was service
bootstrapping, i.e., setting up variables necessary for a
rich client-side application to work. One example of such
a bootstrapping process was observed in a popular free-
mail service’s file storage system in which the UI was
implemented completely in JavaScript. When initially
loading the page, the dynamic script we found provided
a secret token which was later used by the application to
interact with the server using XMLHttpRequests.

Category # domains Highest rank

Retrieval of user-specific data 16 7
Service bootstrapping 15 5
Cross-service data sharing 5 8
Others 13 1

Table 1: Amounts and highest Alexa rank of domains
with respect to their use case

The third widely witnessed use case was cross-service
data sharing, which was often applied to allow for sin-
gle sign-on solutions across multiple services of the same
provider or for tracking of users on different domains
through a single tracking service. The latter was evi-
denced by the same script being included across a multi-
tude of domains from different service providers.

4.4 Types of Security Sensitive Data
In a next step, we conducted a manual analysis of the
scripts’ data that changed its value, depending on the
authentication state of the script request. Within our
data, we identified four categories of potentially security-
critical data:

• Login state: The first type of data that could be
extracted from dynamic scripts was a user’s login
state to a certain application. We found that this
happened either explicitly, i.e., assign a variable dif-
ferently if a user is logged in – or implicitly, e.g. in
cases where a script did not contain any code if a
user was not logged in.

• Unique identifiers: The second category we dis-
covered was the leakage of data that uniquely iden-
tified the user. Among these values are customer or
user IDs as well as email addresses with which a
user was registered to a specific application.

• Personal data: In this category we classified all
those pieces of data which do not necessarily
uniquely identify a user, but provide additional in-
formation on him, such as his real name, his loca-
tion or his date of birth.

• Tokens & Session IDs: The last category we en-
countered were tokens and session identifiers for an
authenticated user. These tokens potentially provide
an attacker with the necessary information to inter-
act with the application in the name of the user.

Table 2 depicts our study’s results with respect to the
occurrences of each category. Please note, that a given

Data domains exploitable highest rank

Login state 49 40 1
Unique Identifiers 34 28 5
Personal data 15 11 11
Tokens & Session IDs 7 4 107

Table 2: Sensitive data contained in dynamic scripts

domain may carry more than one script containing secu-
rity sensitive information and that a given script may fit
into more than one of the four categories.

The following sections give a more detailed insight
into these numbers. The final column shows the high-
est rank of any domain on which we could successfully
extract the corresponding data, i.e., on which we could
bypass encountered protection mechanisms.

4.5 Exploitation
In the following, we discuss several attacks which lever-
age the leakage of sensitive user information. After
outlining potential attack scenarios, we discuss several
concrete examples of attacks we successfully conducted
against our own test accounts.

4.5.1 Utilizing Login Oracles

In the previous section, we discussed that 49 domains
had scripts which returned somewhat different content
if the cookies for the logged in user were removed. In
our notion, we call these scripts login oracles since they
provide an attacker with either explicit or implicit infor-
mation on whether a user is currently logged into an ac-
count on a given website or not. However, out of these
domains, nine domains had scripts with unguessable to-
kens in the URL, therefore these cannot be utilized as
login oracles unless the tokens are known, leaving 40 do-
mains with login oracles.

The most prominent script we found to show such
a behavior is hosted by Google and is part of the
API for Google Plus. This script, which has a seem-
ingly static address, shows differences in three differ-
ent variables, namely isLoggedIn, isPlusUser and
useFirstPartyAuthV2 and hence enables an attacker
to ascertain a user’s login status with Google.

The information obtained from the oracles can be
utilized to provide additional bits to fingerprinting ap-
proaches [7]. It may however also be used by an attacker
to perform a service-specific phishing attack against his
victim. Oftentimes, spam emails try to phish user cre-
dentials from banks or services the receiving user does
not even have an account on. If, however, the attacker
knows with certainty that the user currently visiting his

website is logged in to, e.g., google.com, he can display
a phishing form specifically aimed at users of Google.
This attack can also be improved if additional informa-
tion about the user is known – we will discuss this attack
later in this section.

4.5.2 Tracking Users

Out of the 40 domains which provided a login oracle, 28
also provided some pieces of data which uniquely iden-
tify a user. Among these features, the most common
identifier was the email address used to register for the
corresponding service, followed by some form of user ID
(such as login name or customer ID). These features can
be used to track users even across device platforms, given
that they log in to a service leaking this information. The
highest-rated service leaking this kind of unique identi-
fier was a top-ranked Chinese search engine. Following
that, we found that a highly-frequented page which fea-
tures a calendar function also contained a script leaking
the email address of the currently logged in user. Since
the owning company also owns other domains which all
use a single sign-on, logging in to any of these sites also
enabled the attack.

4.5.3 Personalized Social Engineering

In many applications, we found that email addresses
were being leaked to an attacker. This information can
be leveraged to construct highly-personalized phishing
attacks against users. As Downs et al. [5] discovered,
users tend to react on phishing emails in more of the
cases if they have a standing business relationship with
the sending entity, i.e. have an account on a given site, or
the email appears to be for them personally.

Hence, gathering information on sites a user has an
account on as well as retrieving additional information
such as his name can aid an attacker in a personalized at-
tack. An attacker may choose to abuse this in two ways –
first and foremost, trying to send phishing mails to users
based on the services they have accounts. However, by
learning the email address and hence email provider of
the user, an attacker may also try to phish the user’s mail
account. In our study, we found that 14 different domains
leak email addresses and out of these, ten domains also
revealed (at least) the first name of the logged in user.

In addition, two domains leaked the date of birth and
one script, hosted on a Chinese Web site, even contained
the (verified) mobile phone number of the victim. We
believe that, especially considering the discoveries by
Downs et al., all this information can be leveraged to-
wards creating highly-personalized phishing attacks.

Another form of personalized social engineering at-
tacks enabled by our findings is targeted advertisement.

We found that two online shopping platforms utilize a
dynamic script which provides the application with the
user’s wish list. This information can be leveraged by an
attacker to either provide targeted advertisements aimed
at profiting (e.g. linking to the products on Amazon, us-
ing the attacker’s affiliate ID) or to sell fake products
matching the user’s wishes.

Application-Specific Attacks Alongside the theoreti-
cal attack scenarios we discussed so far, we found multi-
ple applications with issues related to the analyzed leak-
ing scripts as well as several domains with CSRF flaws.
In the following, we discuss these attacks briefly.

Extracting Calendar Entries: One of the most promi-
nent Web sites we could successfully exploit was a mail
service which offers a multitude of additional functional-
ity such as management of contacts and a calendar. The
latter is implemented mostly in JavaScript and retrieves
the necessary bootstrap information when the calendar is
loaded. This script, in the form a function call to a cus-
tom JavaScript API, provides the application with all of
the user’s calendars as well as the corresponding entries.
This script was not protected against inclusion by third-
party hosts and hence, leaks this sensitive information
to an attacker. Alongside the calendar’s and entries, the
script also leaks the e-mail address of the victim, there-
fore allowing the attacker to associate the appointments
to their owner.

Reading Email Senders and Subjects: When logging
in to the portal for a big Chinese Web service provider,
we found that the main page shows the last five emails
for the currently logged in user. Our browser exten-
sion determined that this information was provided by
an external script, solely using cookies to authenticate
the user. The script contained the username, amount of
unread emails and additionally the senders and subjects
as well as the received dates for the last five emails of
the victim. An abbreviated excerpt is shown in Listing 6.
Although this attack does not allow for an actual extrac-
tion of the content of an email, at the very least contacts
and topics of current discussions of the victim are leaked
which we believe to be a major privacy issue.

Listing 6 Excerpt of the script leaking mail information
var mailinfo = {

"email": "user@domain.com",
...,
"maillist": [{

"mid": "0253FE71.....001",
"mailfrom":"First Last <firstlast@gmail.com>",

"subject":"Top secret insider information",
"ctime": "2014-05-02 21:11:46"}]

..}

Session Hijacking Vulnerabilities: During the course
of our study, we found that two German file storage ser-
vices contained session hijacking vulnerabilitie. Both
these services are implemented as a JavaScript applica-
tion, which utilizes XMLHttpRequest to retrieve direc-
tory listings and manage files in the storage. To avoid
unauthorized access to the system, both applications re-
quire a session key to be present within a cookie as well
as in an additional HTTP header. When first visiting
the file storage service, the application loads an external
script called userdata.js which contains the two nec-
essary secrets to access the service: the username and the
aforementioned session key. We found that this script is
not properly protected against cross-domain data leak-
age, allowing an attacker to leak the secret information.
With this information at hand, we were able to list and
access any file in the victim’s file storage. Furthermore,
it enabled us to invoke arbitrary actions in the name of
the user such as creating new files or deleting existing
ones.

One minor drawback in this attack is the need for the
attacker to know the victim’s username in advance, since
the dynamic script requires a GET parameter with the
username. Regardless, we believe that by either targeted
phishing emails or retrieving the email address through
another service (as discussed earlier) this attack is still
quite feasible.
Circumventing CSRF Protection: One way of pre-
venting cross-domain attacks is the use of CSRF tokens,
namely secrets that are either part of the URL (as a GET
parameter) or need to be posted in a form and can then
be verified by the server. Although CSRF tokens are a
well-understood means of preventing these attacks and
provide adequate security, the proper implementation is
a key factor. In our analysis, we found that two domains
contained scripts which leaked just these critical tokens.

The first one was present on a new domain, which re-
quired the knowledge of two secrets in order to change
profile data of the user – a 25 byte long token as well as
the numerical user ID. While browsing the Web site, our
extension detected a state-dependent dynamic script that
exactly contained these two values. As a consequence,
we were able to leak this data and use it to send a properly
authenticated profile change request to the correspond-
ing API. As a consequence, we were able to arbitrarily
change a user’s profile data. Interestingly, one field that
was only visible to the user himself contained a stored
XSS vulnerability. Hence, we were able to send a Cross-
Site Scripting payload within this field to exploit the, oth-
erwise unexploitable, XSS flaw.

Apart from the obvious issues an XSS attack could
cause, for a user logged in via the Facebook Social Lo-
gin, we could retrieve the Facebook API access token and
hence interact with the Facebook API in the name of the

user, accessing profile information and even make posts
in the name of the user.

Similar to the first finding, we found an issue on the
highly-ranked domain of a weather service. The appli-
cation provides an API for changing a user’s profile as
well as the password, whereas the old password does not
need to be entered to set a new one. Nevertheless, the
API requires knowledge of the email address of the cur-
rently logged in user, thereby employing at least a vari-
ant of a CSRF token. Similar to the previously outlined
flaw, we found a script that provides information on the
user – among which also the email address is contained.
Hence, we could successfully automate the attack by first
retrieving the necessary token (email) from the leaking
script and subsequently sending a password change re-
quest to the API. Afterwards, we sent both the email ad-
dress (which is also used as the login name) and the new
password back to our servers, essentially taking over the
user’s account in a fully automated manner.

4.5.4 Notification of Vulnerable Sites

In order to allow affected pages to fix the vulnerabili-
ties before they can be exploited, we notified the security
teams of all domains for which we could successfully
craft exploits. To allow for a better understanding of the
general vulnerability as well as the specifics of each do-
main, we created a Web site detailing the problem asso-
ciated with cross-domain includes of JavaScript and the
attack pattern. In addition, we created proof-of-concept
exploits for each flaw and shared this information, aug-
mented by a description of the problem and its impact,
e.g., the potential to hijack a user’s session, with the do-
mains owners.

As of this writing, we received only three replies stat-
ing that the flaw was either being dealt with or had
been fixed already. However, none of the affected sites
agreed to be mentioned in the paper, therefore we opted
to anonymize all the vulnerable services we discovered.

4.5.5 Summary of Our Findings

In total, we found that out of the 49 domains which are
dependent on the user’s login state, 40 lack adequate pro-
tection and can therefore be used to deduce if a user is
logged into a certain application. On 28 of these do-
mains, dynamic scripts allowed for unique identification
of the current user through various means like customer
IDs or email addresses.

Additionally and partly overlapping with the afore-
mentioned scripts, we found that personal data (such as
the name or location) was contained in scripts on 13 do-
mains. Last but not least, we encountered four domains
which allow for extraction of tokens that could in turn be

used to control the target application in the name of the
victimized user. An overview of these results is depicted
in Table 2.

4.6 Non-exploitable Situations
As shown in Table 2, we were not able to leak data from
all of the dynamic scripts we found. In general, we iden-
tified two different reasons for this: Either the URL of
the script was not guessable by an attacker or the Web
site utilized referrer checking to avoid the inclusion of
resources by third parties. While these mechanisms pro-
tected some Web sites from being exploitable, we believe
that the corresponding countermeasures were not placed
intentionally against the described attack, but were rather
in place because of the used application framework (Re-
ferrer checking) or because of the application’s design
(unguessable URLs). In this section, we briefly discuss
and analyze these situations.

4.6.1 Unguessable URLs

A prerequisite for the attack described in this paper is
that an attacker is able to include a certain script file into
his page during a user’s visit. For this, the attacker needs
to know the exact URL under which a certain dynamic
script is available.

Some of the scripts we found required a session ID or
another unguessable token to be present in a GET param-
eter of the URL. As the attacker is in general not able to
obtain such a session ID, the script cannot be included by
the attacker and hence sensitive data cannot be leaked.

4.6.2 Referrer Checking

Another technique that prevented us from exploiting a
script leakage vulnerability was referrer checking. When
a browser generates an HTTP request for an embedded
script, it adds the Referer header containing the URL
of the embedding site. Many Web pages tend to misuse
this header as a security feature [31]. By checking the
domain of the referrer, a Web site is in theory able to
ascertain the origin of the page requesting a resource.

In 2006, however, Johns showed that referrer check-
ing has several pitfalls [17]. As the Referer header was
never intended to serve as a security feature, it should
not be used as a reliable source of information. So, for
example, many proxies and middle boxes remove the
Referer header due to privacy concerns. Furthermore,
several situations exist in which a browser does not attach
a Referer header to a request and as discussed by Ko-
towicz, an attacker can intentionally remove the header
from requests [19].

As a consequence, servers should not rely on the pres-
ence of the Referer header. Hence, if a server receives

a request for a dynamic script that does not provide a
Referer header, it needs to decide whether to allow the
request or whether to block it. If the request is allowed,
the attacker may force the removal of the referrer as dis-
cussed before. On the other hand, if the server blocks
the request (strict referrer checking), it might break the
application for users behind privacy-aware proxies.

We found several domains that implemented referrer
checking. However, of seven pages that conducted such
a check, only two conducted strict referrer checking. As
a consequence, the other five Web sites were still ex-
ploitable by intentionally removing the Referer header.
Listing 7 shows the attack we utilized aiming at stripping
the Referer header. In this example, we use a data URI
assigned to an iframe to embed the leaking script.

Listing 7 Using a data URL within a frame to send a
request without a Referer header
var url = "data:text/html,"

+ "<script src=’"
+ "http://example.org/dynamic_script.js"
+ "’></script>"

+ "<script>"
+ "function leakData(){ ... }; "
+ "leakData();"
+ "</script>";

// create a new iframe

var frame = document.createElement(’iframe’);
// assign the previously created data url

frame.src = url;
body.appendChild(frame);

5 Protection Approach

In our study, we observed a surprisingly high number
of popular Web sites utilizing the dangerous pattern of
using external, dynamically-generated scripts to provide
user-specific data to an application. It seems that de-
velopers are not aware of the severe consequences this
practice has. In order to improve this situation, we pro-
vide a secure and functionally-equivalent solution. The
main problem of dynamically generated script includes is
the incorporation of sensitive user data into files that are
not completely protected by the Same-Origin Policy. We
discourage this practice and advise developers to strictly
separate JavaScript code from sensitive user data.

Figure 2 depicts our design proposal. In this pro-
posal script code is never generated on the fly, but al-
ways pulled from a static file. Sensitive and dynamic
data values should be kept in a separate file, which cannot
be interpreted by the browser as JavaScript. When the
static JavaScript gets executed, it sends an XMLHttpRe-
quest to the file containing the data. By default access

Server%

Client%

h,p://example.org%

Browser%

Sta9c%JavaScript%

h,p://example.org/script.js%

throw%1;%
{%
%%“username“:%“JohnDoe“,%
%%“email”:%“john@example.org”%
}%

h,p://example.org/data.json%

Figure 2: Protection scheme

to the response of an XMLHttpRequest is governed by
the Same-Origin Policy. Hence, third-party sites cannot
request the file within the user’s authentication context.
As a consequence, attackers cannot access the data con-
tained within this file. By using Cross-Origin Resource
Sharing (CORS) [28], Web developers are able to selec-
tively grant access to the file to any third party service
that requires access.

While the attacker is able to include and execute the
static JavaScript file within his page, the corresponding
code will be executed in the origin of the attacker’s Web
site. Hence, when the script code requests the data file,
which resides in the origin of the legitimate Web site, the
two origins do not match and hence the Same-Origin Pol-
icy protects the file’s content from being accessed by the
attacker. If, however, the legitimate site requests the data
files, the two origins match and thus access is granted.

As the data file does not contain valid JavaScript code,
it cannot be included and executed by the attacker via the
HTML script tag. To completely avoid this risk, Web
developers can either include a so-called unparseable
cruft to the beginning of file which causes a compile time
failure or add valid JavaScript that effectively stops exe-
cution during run time, such as an uncatchable exception
(cp. Figure 2) [31].

6 Related Work

Conceptually closest to the attacks presented in Sec-
tion 4.5 is JSON Hijacking, an exploitation technique
initially presented by Grossman in 2006 [9]. In his at-
tack he utilized a cross-domain script include pointing
to a JSON-array resource, which originally was intended
as an end-point for an XMLHttpRequest. Via using a
non-standard redefinition of JavaScript’s object construc-
tor, he was able obtain the content of the user’s GMail

address book. Grossman reported the issue to Google,
where the term Cross-Site Script Inclusion (XSSI) was
coined by Christoph Kern. Kern later mentioned the term
publicly for the first time in his book from 2007 [18].
Several other authors later on picked up this term to refer
to slight variations of the attack [27, 31].

At the same time Chess et al. [3] picked up Gross-
man’s technique, slightly generalized it and coined the
term JavaScript Hijacking. Unlike the vulnerabilities in
this paper, these attacks do not target dynamic JavaScript
resources. Instead they use script-tags in combination
with a non-standard JavaScript quirk (that has been re-
moved from all major browsers in the meantime) to leak
data that is encoded in the JSON-array format.

Furthermore, in 2013, Grossman [11] discussed the
idea of utilizing resources which are only accessible by
users that are logged in to determine the logon status of
a user. He also proposed to employ click-jacking attacks
on the user to force him to like the attacker’s Facebook
or Google+ site. In doing so and in comparing the latest
addition to his followers, an attacker could thereby de-
duce the identity of the user currently visiting his web-
site. The idea of determining a user logon status was
picked up by Evans [8], who demonstrated a login or-
acle on myspace.com by including a Cascading Style
Sheet file from the service which changed certain prop-
erties based on whether the user was logged in or not.

In 2015, Takeshi Terada presented another variation
of the attack that he called Identifier-based XSSI. Terada
used script tags to reference CSV files from third-party
domains. A CSV file usually consists of a comma sepa-
rated list of alphanumeric words. Under certain circum-
stances this list also represents a syntactically correct list
of JavaScript variable declarations. Hence, by referenc-
ing such a file the JavaScript engine will create a set of
global variables named like the values in the CSV file.
By enumerating all globally accessible variables, Terada
was able leak the contents of the file.

Other related work has focused on CSS-based history
leakage [13, 10, 14]. Analogously to login state leakage,
retrieval of a user’s history allows an attacker to deduce
that a victim has an account on a given site, hence en-
abling him to start target phishing attacks similar to the
ones we outlined in Section 4.5.3.

Another means of utilizing history leakage was dis-
cussed in 2010 by Wondracek et al. [30], who proposed
a scheme capable of de-anonymizing users based on their
group membership in OSNs. To do so, they utilized the
stolen history of a user to determine the group sites the
user had previously visited. Comparing these to a list
of the members of the corresponding groups allowed the
authors to determine the user’s identity. Recently, for
a poster, Jia et al. [16] discussed the notion of utilizing

timing side-channels on the browser cache to ascertain a
user’s geo location.

In 2012, Nikiforakis et al [24] conducted a large-scale
analysis of remote JavaScript, focusing mainly on the po-
tential security issues from including third-party code.
For W2SP 2011, two groups [20, 15] conducted an anal-
ysis of cross-domain policies for Flash, aiming specifi-
cally at determining those domains which allow access
from any domain. Since Flash attaches the cookies for
the target domain to said requests, they discussed attack
scenarios in which a malicious Flash applet is used to
retrieve proprietary information.

In addition to these attacks, Paul Stone demonstrated
another means of stealing sensitive information across
origin boundaries. To do so, he leveraged a timing side
channel, allowing him to leak a framed document pixel
by pixel [26].

7 Outlook

The goal of this paper was to conduct an initial study
into the usage and potential pitfalls of dynamic scripts
in real world applications. Our data set of 150 highly
ranked domains gives a good glimpse into the problems
caused by such scripts. Nevertheless, we believe that a
large-scale study could provide additional key insights
into the severity of the issue. To enable such a study,
an important problem to solve is the automation of the
analysis—starting from fully automated account regis-
tration and ranging to meaningful interaction with the
application. Therefore, implementing such a generic, yet
intelligent crawler and investigating how well it can im-
itate user interaction is a challenging task we leave for
future work. Along with such a broader study, enhance-
ments have to be made to cope with the increased amount
of data. As an example, our Chrome extension could use
advanced comparisons based on syntactical and seman-
tical differences of the JavaScript code rather than based
on content. Since our data set was limited by the fact that
our analysis required manual interaction with the inves-
tigated applications, the need to automate the secondary
analysis steps, i.e., examination of the differences and
verification of a vulnerability, did not arise.

Recently, the W3C has proposed a new security mech-
anism called Content Security Policy (CSP), which is a
“declarative policy that lets authors of a web application
inform the client from where the application expects to
load resources” [25]. In its default setting, CSP forbids
the usage of inline scripts and hence, programmers are
compelled to put the code into external scripts. During
our study we noticed that many of these inline scripts
are also generated dynamically and incorporate sensitive
user data. If all these current inline scripts are naively
transformed into dynamic, external script resources, it is

highly likely that the attack surface of this paper’s attacks
will grow considerably.

For instance, Doupé et al. [4] developed a tool called
deDacota which automatically rewrites applications to
adhere to the CSP paradigms by moving all inline script
code to external scripts. As our work has shown, these
external scripts – if not protected properly – may be in-
cluded by any third-party application and hence might
leak secret data. Therefore, we believe that it is imper-
ative that measures are taken to ensure the secure, yet
flexible client-side access to sensitive data and that the
changing application landscape caused by CSP adoption
is closely monitored. As discussed by Weissbacher et al.,
however, CSP is not yet widely deployed and signifi-
cantly lags behind other security measures [29].

Furthermore, in this paper, we exclusively focused on
dynamic JavaScript that is pulled into the browser via
script-tags. This is not necessarily the only method,
how server generated script content is communicated.
An alternative to script tags is to transport the code
via XMLHttpRequests bodies, which are subsequently
passed to the eval() API. In future work, we plan to
investigate such XMLHttpRequests endpoints in respect
to their susceptibility to attack variants related to this pa-
per’s topic.

Finally, as related work has indicated, internal appli-
cation information, such as the login state of a user, may
also be leaked via images or style sheets. In this case,
the observed effects of a cross-domain element inclusion
manifest themselves through side effects on the DOM
level, as opposed to a footprint in the global script object.
Hence, a systematical further analysis on other classes of
server-side content generation that might enable related
attacks would be a coherent extension of our work.

8 Summary & Conclusion

In this paper, we conducted a study into the prevalence
of a class of vulnerabilities dubbed Cross-Site Script In-
clusion. Whenever a script is generated on the fly and
incorporates user-specific data in the process, an attacker
is able to include the script to observe its execution be-
havior. By doing so, the attacker can potentially extract
the user-specific data to learn information which he oth-
erwise wouldn’t be able to know.

To investigate this class of security vulnerabilities, we
developed a browser extension capable of detecting such
scripts. Utilizing this extension, we conducted an empir-
ical study of 150 domains in the Alexa Top 500, aimed
at gaining insights into prevalence and purpose of these
scripts as well as security issues related to the contained
sensitive information.

Our analysis showed that out of these 150 domains, 49
domains utilize server-side JavaScript generation. On 40

domains we were able to leak user-specific data leading
to attacks such as deanonymizing up to full account hi-
jacking. Our practical experiments show that even high-
profile sites are vulnerable to this kind of attacks.

After having demonstrated the severe impact these
flaws can incur, we proposed a secure alternative using
well-known security concepts, namely the Same-Origin
Policy and Cross-Origin Resource Sharing, to thwart the
identified security issues.

Acknowledgements
The authors would like to thank the anonymous review-
ers for their valued feedback. More over, we want to
thank our shepherd Joseph Bonneau for the support in
getting our paper ready for publication. This work was
in parts supported by the EU Project STREWS (FP7-
318097). The support is gratefully acknowledged.

References
[1] BARTH, A., JACKSON, C., AND MITCHELL, J. C. Robust

defenses for cross-site request forgery. In Proceedings of the
15th ACM conference on Computer and communications secu-
rity (2008), ACM, pp. 75–88.

[2] CERT. Advisory ca-2000-02 malicious html tags embedded in
client web requests, February 2000.

[3] CHESS, B., O’NEIL, Y. T., AND WEST, J. Java-
Script Hijacking. [whitepaper], Fortify Software, http:
//www.fortifysoftware.com/servlet/downloads/
public/JavaScript_Hijacking.pdf, March 2007.

[4] DOUPÉ, A., CUI, W., JAKUBOWSKI, M. H., PEINADO, M.,
KRUEGEL, C., AND VIGNA, G. dedacota: toward preventing
server-side xss via automatic code and data separation. In Pro-
ceedings of the 2013 ACM SIGSAC conference on Computer &
communications security (2013), ACM, pp. 1205–1216.

[5] DOWNS, J. S., HOLBROOK, M. B., AND CRANOR, L. F. De-
cision strategies and susceptibility to phishing. In Proceedings
of the second symposium on Usable privacy and security (2006),
ACM, pp. 79–90.

[6] ECMASCRIPT, E., ASSOCIATION, E. C. M., ET AL. Ec-
mascript language specification, 2011.

[7] ELECTRONIC FRONTIER FOUNDATION. Panopticlick – how
unique – and trackable – is your browser? online,
https://panopticlick.eff.org/about.php, last accessed
2014/05/10.

[8] EVANS, C. Cross-domain leaks of site logins. online, http:
//bit.ly/1lz1HPl, last accessed 2014/05/10.

[9] GROSSMAN, J. Advanced Web Attack Techniques using GMail.
[online], http://jeremiahgrossman.blogspot.de/2006/
01/advanced-web-attack-techniques-using.html, Jan-
uary 2006.

[10] GROSSMAN, J. I know where you’ve been. [online],
http://jeremiahgrossman.blogspot.com/2006/08/
i-know-where-youve-been.html, August 2006.

[11] GROSSMAN, J. The web won’t be safe or secure until we break
it. Communications of the ACM 56, 1 (January 2013), 68–72.

[12] HANSEN, R., AND GROSSMAN, J. Clickjacking. Sec Theory,
Internet Security (2008).

[13] JACKSON, C., BORTZ, A., BONEH, D., AND MITCHELL, J. C.
Protecting Browser State from Web Privacy Attacks. In Proceed-
ings of the 15th ACM World Wide Web Conference (WWW 2006)
(2006).

[14] JAKOBSSON, M., AND STAMM, S. Invasive Browser Sniffing
and Countermeasures. In Proceedings of The 15th annual World
Wide Web Conference (WWW2006) (2006).

[15] JANG, D., VENKATARAMAN, A., SAWKA, G. M., AND
SHACHAM, H. Analyzing the cross-domain policies of flash ap-
plications. In Proceedings of the 5th Workshop on Web (2011),
vol. 2.

[16] JIA, Y., DONGY, X., LIANG, Z., AND SAXENA, P. I
know where you’ve been: Geo-inference attacks via the
browser cache. IEEE Security&Privacy 2014, http://www.
ieee-security.org/TC/SP2014/posters/JIAYA.pdf, last
accessed 2014/05/17.

[17] JOHNS, M., AND WINTER, J. Requestrodeo: Client side protec-
tion against session riding. Proceedings of the OWASP Europe
2006 Conference (2006).

[18] KERN, C., KESAVAN, A., AND DASWANI, N. Foundations of
security: what every programmer needs to know. Apress, 2007.

[19] KOTOWICZ, K. Stripping the referrer for fun and
profit. online, http://blog.kotowicz.net/2011/10/
stripping-referrer-for-fun-and-profit.html, last ac-
cessed 2014/05/10.

[20] LEKIES, S., JOHNS, M., AND TIGHZERT, W. The state of the
cross-domain nation. In Proceedings of the 5th Workshop on Web
(2011), vol. 2.

[21] MOZILLA. Inheritance and the prototype chain. online,
https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Guide/Inheritance_and_the_prototype_
chain, last accessed 2014/05/10.

[22] MOZILLA. Mutationobserver. online, https://developer.
mozilla.org/en-US/docs/Web/API/MutationObserver,
last accessed 2014/05/10.

[23] MOZILLA DEVELOPER NETWORK, AND RUDERMAN, J. Same-
origin policy. online, https://developer.mozilla.org/
en-US/docs/Web/Security/Same-origin_policy.

[24] NIKIFORAKIS, N., INVERNIZZI, L., KAPRAVELOS, A., VAN
ACKER, S., JOOSEN, W., KRUEGEL, C., PIESSENS, F., AND
VIGNA, G. You Are What You Include: Large-scale Evaluation
of Remote JavaScript Inclusions. In 19th ACM Conference on
Computer and Communications Security (CCS 2012) (2012).

[25] STERNE, B., AND BARTH, A. Content security policy 1.0.
online, http://www.w3.org/TR/2012/CR-CSP-20121115/.
last accessed 2014/05/10.

[26] STONE, P. Pixel perfect timing attacks with html5.

[27] TERADA, T. Identifier based xssi attacks, 2015.

[28] VAN KESTEREN, A., ET AL. Cross-origin resource sharing.
W3C Working Draft WD-cors-20100727 (2010).

[29] WEISSBACHER, M., LAUINGER, T., AND ROBERTSON, W.
Why is csp failing? trends and challenges in csp adoption. In
Research in Attacks, Intrusions and Defenses. Springer, 2014,
pp. 212–233.

[30] WONDRACEK, G., HOLZ, T., KIRDA, E., AND KRUEGEL, C.
A practical attack to de-anonymize social network users. In Secu-
rity and Privacy (SP), 2010 IEEE Symposium on (2010), IEEE,
pp. 223–238.

[31] ZALEWSKI, M. The Tangled Web: A Guide to Securing Modern
Web Applications. No Starch Press, 2012.

